In plants, the bZIP (basic leucine zipper) transcription factors regulate diverse functions, including processes such as plant development and stress response. However, few have been functionally characterized in maize (Zea mays). In this study, we cloned ZmbZIP72, a bZIP transcription factor gene from maize, which had only one copy in the maize genome and harbored three introns. Analysis of the amino acid sequence of ZmbZIP72 revealed a highly conserved bZIP DNA-binding domain in its C-terminal region, and four conserved sequences distributed in N- or C-terminal region. The ZmbZIP72 gene expressed differentially in various organs of maize plants and was induced by abscisic acid, high salinity, and drought treatment in seedlings. Subcellular localization analysis in onion epidermal cells indicated that ZmbZIP72 was a nuclear protein. Transactivation assay in yeast demonstrated that ZmbZIP72 functioned as a transcriptional activator and its N terminus (amino acids 23-63) was necessary for the transactivation activity. Heterologous overexpression of ZmbZIP72 improved drought and partial salt tolerance of transgenic Arabidopsis plants, as determined by physiological analyses of leaf water loss, electrolyte leakage, proline content, and survival rate under stress. In addition, the seeds of ZmbZIP72-overexpressing transgenic plants were hypersensitive to ABA and osmotic stress. Moreover, overexpression of ZmbZIP72 enhanced the expression of ABA-inducible genes such as RD29B, RAB18, and HIS1-3. These results suggest that the ZmbZIP72 protein functions as an ABA-dependent transcription factor in positive modulation of abiotic stress tolerance and may be a candidate gene with potential application in molecular breeding to enhance stress tolerance in crops.
In the current study, a fundamental question, that is, the mechanisms related to the beneficial effects of melatonin on mammalian embryonic development, was addressed. To examine the potential beneficial effects of melatonin on bovine embryonic development, different concentrations of melatonin (10(-11), 10(-9), 10(-7), 10(-5), 10(-3) M) were incubated with fertilized embryos. Melatonin in the range of 10(-11) to 10(-5) M significantly promoted embryonic development both in early culture medium (CR1aa +3 mg/mL BSA) and in later culture medium (CR1aa + 6%FBS). The most effective concentrations applied in the current studies were 10(-9) and 10(-7) M. Using quantitative real-time PCR with immunofluorescence and Western blot assays, the expression of melatonin receptor MT1 and MT2 genes was identified in bovine embryos. Further studies indicate that the beneficial effects of melatonin on bovine embryo development were mediated by the MT1 receptor. This is based on the facts that luzindole, a nonselective MT1 and MT2 antagonist, blocked the effect on melatonin-induced embryo development, while 4-P-PDOT, a selective MT2 antagonist, had little effect. Mechanistic explorations uncovered that melatonin application during bovine embryonic development significantly up-regulated the expression of antioxidative (Gpx4, SOD1, bcl-2) and developmentally important genes (SLC2A1, DNMT1A, and DSC2) while down-regulating expression of pro-apoptotic genes (P53, BAX, and Caspase-3). The results obtained from the current studies provide new information regarding the mechanisms by which melatonin promotes bovine embryonic development under both in vitro and in vivo conditions.
As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col−HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col−HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.