In order to explore the variation of crumb rubber modified asphalt (CR) before and after aging at the micro- and nanoscales, the molecular dynamics simulation and atomic force microscopy (AFM) asphalt microstructure scanning were carried out on CR before and after aging. The molecular dynamics energy, radial distribution function (RDF), surface microstructure image, roughness, and other test results of the CR before and after aging were compared and analyzed. The results show that the molecular dynamic energy of the CR after aging increases; the asphaltene-asphaltene RDF is decreased after aging; and the AFM surface microstructure images of asphalt before and after aging do not change significantly, but quantitative analysis by roughness theory shows that aging makes the microscopic surface of the CR more uniform and gentle. By analyzing the changes of asphalt properties before and after aging at two scales, it can be found that there is a certain relationship between the properties obtained at different scales. The reasons and mechanisms for the influence of microstructure on aging are obtained by analyzing this relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.