Ferroelectric varactors should have high tunability at low permittivity and a working electric field to obtain better impedance matching and stable tunability. In this work, (Ba0.91Ca0.09)(SnxZr0.2−xTi0.8)O3-2 mol% CuO-1 mol% Li2CO3 (abbreviated as BCSZT100x, x = 0.05, 0.10, 0.15 and 0.20, respectively) are prepared to achieve high tunability at low permittivity and a working electric field. The tunable mechanisms are investigated based on crystal structure, micro-morphology and the permittivity-temperature spectrum. The results show that the shrink of oxygen octahedron and weaker interaction force between Sn4+ and O2− make BCSZT5 ceramic have a higher tunability value of 26.55% at low permittivity (1913) and a working electric field (7.3 kV/cm). The tunability value of BCSZT5 ceramic increases by 58%, while its permittivity decreases by 25%, compared with x = 0. Those advantages make BCSZT5 ceramic have substantial application prospects in varactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.