Pain is a multidimensional and subjective experience which is considered as a debilitating disease when it becomes chronic. Chronic pain does indeed affect various aspects of the patient's quality of life, including mood, sleep and cognitive processes (
Chronic pain produces psychologic distress, which often leads to mood disorders such as depression. Co-existing chronic pain and depression pose a serious socioeconomic burden and result in disability affecting millions individuals, which urges the development of treatment strategies targeting this comorbidity. Ketamine, a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, is shown to be efficient in treating both pain and depression-related symptoms. However, the molecular characteristics of its role in chronic pain-induced depression remain largely unexplored. Hence, we studied the behavioral and molecular effects of a single systemic administration of ketamine (15 mg/kg, i.p.) on mechanical hypersensitivity and depressive-like consequences of chronic neuropathic pain. We showed that ketamine transiently alleviated mechanical hypersensitivity (lasting < 24h), while its antidepressant effect was observed even 72 hours after administration. In addition, ketamine normalized the upregulated expression of the mitogen activated protein kinase (MAPK) phosphatase 1 (MKP-1) and the downregulated phosphorylation of extracellular signal-regulated kinase (pERK) in the anterior cingulate cortex (ACC) of mice displaying neuropathic pain-induced depressive-like behaviors. This effect of ketamine on the MKP-1 was first detected 30 minutes after the ketamine administration and persisted until 72h. Altogether, these findings provide insights into the behavioral and molecular changes associated with single ketamine administration in the comorbidity of chronic pain and depression.
While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.