Transient Ca(2+)/polyP-mediated mPTP opening during ischaemia may serve to protect cells against cytosolic Ca(2+) overload, whereas ROS/pH-mediated sustained mPTP opening on reperfusion induces cell death.
Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.
2+load. Comparable increases of cytoplasmic CaTs induced by -adrenoceptor stimulation or elevation of extracellular Ca
2+could not mimic the endothelin-1 effects on nuclear CaTs, suggesting that endothelin-1 specifically modulates nuclear Ca 2+ signalling. Thus, endothelin-1 enhances nuclear CaTs in atrial myocytes by increasing fractional Ca 2+ release from perinuclear stores. This effect is mediated by the coupling of endothelin receptor A to PLC-Ins(1,4,5)P 3 signalling and might contribute to excitation-transcription coupling.
Stimulation of IP3Rs with ET-1 induces Ca(2+ )release from the SR which is tunnelled to mitochondria via mitochondrial RyR leading to stimulation of mitochondrial ATP production.
Trimetazidine (TMZ) is used successfully for treatment of ischemic cardiomyopathy, however its therapeutic potential in heart failure (HF) remains to be established. While the cardioprotective action of TMZ has been linked to inhibition of free fatty acid oxidation (FAO) via 3-ketoacyl CoA thiolase (3-KAT), additional mechanisms have been suggested. The aim of this study was to evaluate systematically the effects of TMZ on calcium signaling and mitochondrial function in a rabbit model of non-ischemic HF and to determine the cellular mechanisms of the cardioprotective action of TMZ. TMZ protected HF ventricular myocytes from cytosolic Ca2+ overload and subsequent hypercontracture, induced by electrical and β-adrenergic (isoproterenol) stimulation. This effect was mediated by the ability of TMZ to protect HF myocytes against mitochondrial permeability transition pore (mPTP) opening via attenuation of reactive oxygen species (ROS) generation by the mitochondrial electron transport chain (ETC) and uncoupled mitochondrial nitric oxide synthase (mtNOS). The majority of ROS generated by the ETC in HF arose from enhanced complex II-mediated electron leak. TMZ inhibited the elevated electron leak at the level of mitochondrial ETC complex II and improved impaired activity of mitochondrial complex I, thereby restoring redox balance and mitochondrial membrane potential in HF. While TMZ decreased FAO by ~15%, the 3-KAT inhibitor 4-bromotiglic acid did not provide protection against palmitic acid-induced mPTP opening, indicating that TMZ effects were 3-KAT independent. Thus, the beneficial effect of TMZ in rabbit HF was not linked to FAO inhibition, but rather associated with reduced complex II- and uncoupled mtNOS-mediated oxidative stress and decreased propensity for mPTP opening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.