SUMMARY. The objectives of this study were to measure action potential parameters in enzymedissociated, adult rat ventricular myocytes stimulated at 1 Hz, to compare these measurements with those obtained from intact ventricular tissue, and to determine myocyte and tissue responses at stimulus frequencies between 0.1 and 5 Hz. Action potentials were characterized in terms of amplitude, overshoot, resting potential, duration at 25% and 75% repolarization (APD25, APD75), and V max . Based on statistical differences in APD25 and APD75, myocyte action potentials were classified as type 1 (3.1 ± 1.0 and 21.5 ± 3.6 msec), type II (7.4 ± 1.1 and 38.2 ± 6.7 msec), or type III (14.5 ± 1.9 and 46.0 ± 4.1 msec). Action potentials corresponding to type I were found in right ventricular endocardium and right papillary muscles, and those corresponding to types II and III in the left ventricular endocardium [apex, middle (II); base (III)] and left papillary muscles (II). Myocytes and papillary muscles responded to increases in driving rate with nearly identical lengthening of APD25 and shortening of APD 75 . The one exception was at 5 Hz where a lengthening of the APD75 occurred in some myocytes. We conclude that action potential configuration in rat ventricle is heterogeneous, and that this is reflected by the different types of action potentials in isolated myocytes. It is likely that the magnitude of a transient outward current is a determinant of action potential configuration, and that slow reactivation of this current is a significant factor underlying the stimulus frequency response. (Ore Res 52: 280-290, 1983)
Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease.
Laser scanning confocal microscopy of the Ca(2+)-sensitive fluorophore fluo-3 has been used to investigate spontaneous and propagated calcium release at high temporal and spatial resolution in enzymatically dispersed rat cardiomyocytes. Waves of fluorescence which propagated throughout the cytosol were evident in spontaneously contracting cardiac cells containing fluo-3, but not in cells containing Ca(2+)-insensitive fluorophores [2',7'-bis (carboxyethyl)-5,6-carboxyfluorescein, SNARF-1, rhodamine-123, or tetramethylrhodamine-labeled dextran]. These waves represent localized areas of elevated [Ca2+] [975 +/- 13 (SE) nM, range 800-1,500 nM; n = 16 cells]. Ca2+ waves were initiated by the spontaneous release of Ca2+ from the sarcoplasmic reticulum (SR) and propagated through cells at rates of 50-150 microns/s. Ca2+ waves were usually initiated at the cell ends, but multiple and variable initiation foci were observed in some cells. Where waves intersected within a single cell there was extinction of wave propagation, confirming the SR as the direct source of Ca2+ and revealing a refractory period in SR Ca2+ release. In some cells high-frequency Ca2+ waves lead to synchronized elevation of [Ca2+] throughout the entire cytosol and within the time period associated with cell depolarization. These observations support the hypothesis that some cardiac arrhythmias are initiated by spontaneous and propagated Ca2+ release and involve subsequent depolarization, global elevation of intracellular [Ca2+], and cell contraction.
SummaryThe ability to image phase distributions with high spatial resolution is a key capability of microscopy systems. Consequently, the development and use of phase microscopy has been an important aspect of microscopy research and development. Most phase microscopy is based on a form of interference. Some phase imaging techniques, such as differential interference microscopy or phase microscopy, have a low coherence requirement, which enables high-resolution imaging but in effect prevents the acquisition of quantitative phase information. These techniques are therefore used mainly for phase visualization. On the other hand, interference microscopy and holography are able to yield quantitative phase measurements but cannot offer the highest resolution. A new approach to phase microscopy, quantitative phase-amplitude microscopy (QPAM) has recently been proposed that relies on observing the manner in which intensity images change with small defocuses and using these intensity changes to recover the phase. The method is easily understood when an object is thin, meaning its thickness is much less than the depth of field of the imaging system. However, in practice, objects will not often be thin, leading to the question of what precisely is being measured when QPAM is applied to a thick object. The optical transfer function formalism previously developed uses threedimensional (3D) optical transfer functions under the Born approximation. In this paper we use the 3D optical transfer function approach of Streibl not for the analysis of 3D imaging methods, such as tomography, but rather for the problem of analysing 2D phase images of thick objects. We go on to test the theoretical predictions experimentally. The two are found to be in excellent agreement and we show that the 3D imaging properties of QPAM can be reliably predicted using the optical transfer function formalism.
The measurement of the volume of intact, viable cells presents challenging problems in many areas of experimental and diagnostic science involved in the evaluation of cellular morphology, growth and function. This investigation details the implementation of a recently developed quantitative phase microscopy (QPM) method to measure the volume of erythrocytes under a range of osmotic conditions. QPM is a computational approach which utilizes simple bright field optics to generate cell phase maps which, together with knowledge of the cellular refractive index, may be used to measure cellular volume. Rat erythrocytes incubated in imidazole-buffered solutions (22°C) of graded tonicity were analysed using QPM (n=10 cells/group, x63, 0.8 NA objective). Erythrocyte refractive index (1.367) was measured using a combination of phase and morphological data obtained from cells adopting spherical geometry under hypotonic conditions. Phase-computed volume increased with decreasing solution osmolality: 42.8 ± 2.4, 48.7 ± 2.3, 62.6 ± 2.3, 90.8 ± 7.7 µm3 in solutions of 540, 400, 240, and 170 mosmol/kg respectively. These volume changes were associated with crenated, bi-concave and spherical morphological states associated with increasing tonicity. This investigation demonstrates that QPM is a valid, simple and non-destructive approach for measuring cellular phase properties and volume. QPM cell volume analysis represents a significant advance in viable cell experimental capability and provides for acquisition of ‘real-time’ data - an option not previously available using other approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.