An in vitro angiogenesis system was designed for screening angiogenic agonists and antagonists. In order to obtain large quantities of cells and reproducibility, human endothelial cells with extended life spans were developed by retroviral transfection. The resulting cells grown in a serum-free medium containing endothelial cell growth supplement (ECGS) have a telomerase activity, extended life spans of at least 21 passages, and an endothelial cell phenotype (diI-acetylated-LDL upake, factor VIII-related antigen, VEGFR-1 and R-2, and tissue-type plasminogen activator (tPA)) that resembled that of unaltered primary endothelial cells. Exceptions were (i) a higher expression of tPA, and (ii) a non-significant growth response to FGF-2 or VEGF stimulation. Within three-dimensional fibrin gels, specific cell clones rapidly formed tubular structures in a more reproducible manner than those observed with low-passage primary cells. Tube formation by primary endothelial cells and those with extended life spans was dependent upon FGF-2 and ECGS, respectively. Both cell types produced FGF-2 and VEGF cytokines. Increasing doses of suramin significantly decreased the size of microvessels formed by both cell lines. These functional results indicate that a vascular matrix system containing human cells with extended life spans can be successfully utilized as an in vitro assay for antiangiogenic compounds.
One of the aims of tissue engineering is to be able to develop multi-tissue organs in the future. This requires the optimization of conditions for the differentiation of multiple cell types and maintenance of the differentiated phenotype within complex engineered tissues. The goal of this study was to develop prototype tissue engineered matrices to support the simultaneous growth of different cell types with a particular focus on the angiogenic process. We examined two different matrix compositions for the promotion of blood vessel and tube formation. A fibrin-based matrix with the addition of a combination of growth factors supported vascular growth and the invasion of inflammatory cells. Using this fibrin matrix, in combination with a collagen-based hydrogel, a simple in vitro model of the cornea with adjacent sclera was developed that was complete with innervation and vascular structures. In addition, we showed that collagen-based matrices were effective in delivering mononuclear endothelial progenitor cells to ischemic tissue in vivo, and allowing these cells to incorporate into vascular structures. It is anticipated that with further development, these matrices have potential for use as delivery matrices for cell transplantation and for in vitro study purposes of multiple cell types.
We show that a simple ECM mimetic can promote regeneration of corneal cells and nerves. Gradual turnover of matrix material as part of the natural remodeling process allowed for stable integration with host tissue and restoration of mechanical properties of the organ. The simplicity in fabrication and shown functionality shows potential for ECM substitutes in future clinical applications.
Argon plasma treatment enhanced the attachment of epithelial cells to a collagen-based artificial cornea crosslinked using glutaraldehyde (GA) and glutaraldehyde-polyethylene oxide dialdehyde (GA-PEODA) systems. The epithelialization of untreated and treated surfaces was evaluated by the seeding and growth of human corneal epithelial cells. Characterization of polymer surface properties such as surface hydrophilicity and roughness was also made by contact angle measurement and atomic force microscopy, respectively. Contact angle analysis revealed that the surface hydrophilicity significantly increased after the treatment. In addition, AFM characterization showed an increase in surface roughness through argon plasma treatment. Based on the biological and surface analysis, argon plasma treatment displays promising potential for biocompatibility enhancement of collagenbased artificial corneas. It was also found that the cell attachment to artificial cornea surfaces was influenced by the combined effects of surface chemistry (i.e., surface energy), polymer surface morphology (i.e., surface roughness), and polar interactions between functional groups at the polymer surface and cell membrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.