Voice interfaces are becoming accepted widely as input methods for a diverse set of devices. This development is driven by rapid improvements in automatic speech recognition (ASR), which now performs on par with human listening in many tasks. These improvements base on an ongoing evolution of deep neural networks (DNNs) as the computational core of ASR. However, recent research results show that DNNs are vulnerable to adversarial perturbations, which allow attackers to force the transcription into a malicious output.In this paper, we introduce a new type of adversarial examples based on psychoacoustic hiding. Our attack exploits the characteristics of DNN-based ASR systems, where we extend the original analysis procedure by an additional backpropagation step. We use this backpropagation to learn the degrees of freedom for the adversarial perturbation of the input signal, i.e., we apply a psychoacoustic model and manipulate the acoustic signal below the thresholds of human perception. To further minimize the perceptibility of the perturbations, we use forced alignment to find the best fitting temporal alignment between the original audio sample and the malicious target transcription. These extensions allow us to embed an arbitrary audio input with a malicious voice command that is then transcribed by the ASR system, with the audio signal remaining barely distinguishable from the original signal. In an experimental evaluation, we attack the state-of-the-art speech recognition system Kaldi and determine the best performing parameter and analysis setup for different types of input. Our results show that we are successful in up to 98 % of cases with a computational effort of fewer than two minutes for a ten-second audio file. Based on user studies, we found that none of our target transcriptions were audible to human listeners, who still understand the original speech content with unchanged accuracy.
Voice assistants like Amazon's Alexa, Google's Assistant, or Apple's Siri, have become the primary (voice) interface in smart speakers that can be found in millions of households. For privacy reasons, these speakers analyze every sound in their environment for their respective wake word like "Alexa" or "Hey Siri," before uploading the audio stream to the cloud for further processing. Previous work reported on the inaccurate wake word detection, which can be tricked using similar words or sounds like "cocaine noodles" instead of "OK Google."In this paper, we perform a comprehensive analysis of such accidental triggers, i. e., sounds that should not have triggered the voice assistant, but did. More specifically, we automate the process of finding accidental triggers and measure their prevalence across 11 smart speakers from 8 different manufacturers using everyday media such as TV shows, news, and other kinds of audio datasets. To systematically detect accidental triggers, we describe a method to artificially craft such triggers using a pronouncing dictionary and a weighted, phone-based Levenshtein distance. In total, we have found hundreds of accidental triggers. Moreover, we explore potential gender and language biases and analyze the reproducibility. Finally, we discuss the resulting privacy implications of accidental triggers and explore countermeasures to reduce and limit their impact on users' privacy. To foster additional research on these sounds that mislead machine learning models, we publish a dataset of more than 1000 verified triggers as a research artifact.
Automatic speech recognition (ASR) systems are possible to fool via targeted adversarial examples. These can induce the ASR to produce arbitrary transcriptions in response to any type of audio signal, be it speech, environmental sounds, or music. However, in general, those adversarial examples did not work in a real-world setup, where the examples are played over the air but have to be fed into the ASR system directly. In some cases, where the adversarial examples could be successfully played over the air, the attacks require precise information about the room where the attack takes place in order to tailor the adversarial examples to a specific setup and are therefore not transferable to other rooms. Other attacks, which are robust in an over-the-air attack, are either handcrafted examples or human listeners can easily recognize the target transcription, once they have been alerted to its content.In this paper, we demonstrate the first generic algorithm that produces adversarial examples which remain robust in an over-the-air attack such that the ASR system transcribes the target transcription after actually being replayed. For the proposed algorithm, guessing a rough approximation of the room characteristics is enough and no actual access to the room is required. We use the ASR system Kaldi to demonstrate an end-to-end attack and employ a room-impulse-response (RIR) simulator to harden the adversarial examples against varying room characteristics. Further, the algorithm can also utilize psychoacoustics to hide most of the changes of the original audio signal below the human thresholds of hearing. We show that the adversarial examples work for varying room setups, but also can be tailored to specific room setups. As a result, an attacker can optimize adversarial examples for any kind of target transcription and to arbitrary room setups. Additionally, the adversarial examples remain transferable to varying room conditions with a high probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.