Voice interfaces are becoming accepted widely as input methods for a diverse set of devices. This development is driven by rapid improvements in automatic speech recognition (ASR), which now performs on par with human listening in many tasks. These improvements base on an ongoing evolution of deep neural networks (DNNs) as the computational core of ASR. However, recent research results show that DNNs are vulnerable to adversarial perturbations, which allow attackers to force the transcription into a malicious output.In this paper, we introduce a new type of adversarial examples based on psychoacoustic hiding. Our attack exploits the characteristics of DNN-based ASR systems, where we extend the original analysis procedure by an additional backpropagation step. We use this backpropagation to learn the degrees of freedom for the adversarial perturbation of the input signal, i.e., we apply a psychoacoustic model and manipulate the acoustic signal below the thresholds of human perception. To further minimize the perceptibility of the perturbations, we use forced alignment to find the best fitting temporal alignment between the original audio sample and the malicious target transcription. These extensions allow us to embed an arbitrary audio input with a malicious voice command that is then transcribed by the ASR system, with the audio signal remaining barely distinguishable from the original signal. In an experimental evaluation, we attack the state-of-the-art speech recognition system Kaldi and determine the best performing parameter and analysis setup for different types of input. Our results show that we are successful in up to 98 % of cases with a computational effort of fewer than two minutes for a ten-second audio file. Based on user studies, we found that none of our target transcriptions were audible to human listeners, who still understand the original speech content with unchanged accuracy.
With the increasing use of multimedia data in communication technologies, the idea of employing visual information in automatic speech recognition (ASR) has recently gathered momentum. In conjunction with the acoustical information, the visual data enhances the recognition performance and improves the robustness of ASR systems in noisy and reverberant environments. In audio-visual systems, dynamic weighting of audio and video streams according to their instantaneous confidence is essential for reliably and systematically achieving high performance. In this paper, we present a complete framework that allows blind estimation of dynamic stream weights for audio-visual speech recognition based on coupled hidden Markov models (CHMMs). As a stream weight estimator, we consider using multilayer perceptrons and logistic functions to map multidimensional reliability measure features to audiovisual stream weights. Training the parameters of the stream weight estimator requires numerous input-output tuples of reliability measure features and their corresponding stream weights. We estimate these stream weights based on oracle knowledge using an expectation maximization algorithm. We define 31-dimensional feature vectors that combine model-based and signal-based reliability measures as inputs to the stream weight estimator. During decoding, the trained stream weight estimator is used to blindly estimate stream weights. The entire framework is evaluated using the Grid audio-visual corpus and compared to state-of-the-art stream weight estimation strategies. The proposed framework significantly enhances the performance of the audio-visual ASR system in all examined test conditions. Index Terms-Audio-visual speech recognition, coupled hidden Markov model, logistic regression, multilayer perceptron, reliability measure, stream weight.
Authorship verification tries to answer the question if two documents with unknown authors were written by the same author or not. A range of successful technical approaches has been proposed for this task, many of which are based on traditional linguistic features such as n-grams. These algorithms achieve good results for certain types of written documents like books and novels. Forensic authorship verification for social media, however, is a much more challenging task since messages tend to be relatively short, with a large variety of different genres and topics. At this point, traditional methods based on features like n-grams have had limited success. In this work, we propose a new neural network topology for similarity learning that significantly improves the performance on the author verification task with such challenging data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.