ABSTRACT1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period.2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations.3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible.4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity.5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized.6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.
We traced the origin of dissolved organic matter (DOM) in the large, shallow, eutrophic Lake Võ rtsjärv in Estonia. Allochthonous DOM (Al-DOM) had higher d 13 C values than autochthonous DOM (Au-DOM). The d 13 C of inflow DOM varied from 228.2% to 225.4% (mean 226.7%) and in-lake DOM varied from 228.4% to 226.1% (mean 227.2%). Low stable isotope (SI) signatures of Au-DOM were caused by relatively 13 C-depleted values of its precursors (mainly phytoplankton) with mean d 13 C of 228.9%. SI signatures of dissolved inorganic carbon (DIC) in the inflows and in the lake were also relatively low (from 215.1% to 23.28%). SI values of DOM were lower during the active growing season from May to September and higher from October to April, with the corresponding estimated average proportions of Al-DOM 68% and 81%. The proportion of Al-DOM decreased with increasing water temperature, chlorophyll a, and pH and increased with increasing water level and concentration of yellow substances and DIC. The high proportion of Al-DOM in Võ rtsjä rv shows that, even in this highly productive ecosystem, the labile Au-DOM produced is rapidly utilized and degraded by microorganisms and thus makes a relatively small contribution to the instantaneous in-lake DOM pool.
Climate change is expected to profoundly affect both temperature and net precipitation, with implications for lake water level. We describe the design of a harmonized, simultaneous, cross-European mesocosm experiment to elucidate the effects of climate change on community structure, functioning, and metabolism in shallow lakes at low and high nutrient levels with contrasting depths (1 and 2 m). We used cylindrical (D = 1.2 m) tanks that were either 1.2 or 2.2 m high, each having a 10-cm sediment layer. We inoculated the mesocosms with a mixed sample of sediment and plankton from lakes with contrasting nutrient concentrations and added macrophytes and planktivorous fish. Sediment was pre-equilibrated to the required experimental nutrient concentration. During the experiment the water level decreased with increasing temperature (up to 90 cm in the Mediterranean mesocosms) while conductivity increased. The average chlorophyll a concentration increased with temperature in the deep mesocosms but was more variable in the shallow mesocosms. Macrophyte F. Landkildehus et al. 72abundance increased with temperature, while the oxygen data suggest that net primary production peaked at intermediate temperatures. We conclude that our experimental design has the potential for tracking the interacting effects of global warming and eutrophication in shallow lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.