Operating systems and low-level applications are usually written in languages like C and assembly, which provide access to low-level abstractions. These languages have unsafe type systems that allow many bugs to slip by programmers. For example, in 1988, the Internet Worm exploited several insecure points in Unix including the finger command. A call to finger with an unexpected argument caused a buffer overflow, leading to the shutdown of most Internet traffic. A finger application written in a type-safe language would have prevented its exploit and limited the points the Internet Worm could attack. Such vulnerabilities are unacceptable in securitycritical applications such as the secure coprocessors of the Marianas network [11, 21], secStore key storage from Plan 9 [6], and self-securing storage [25]. This research focuses on safe language techniques for building OS components that cannot cause memory or IO errors. For example, an Ethernet device driver communicates with its device through IO operations. The device depends on FIFO queues to send and receive packets. A mistake in an IO operation can overflow or underflow the FIFO queues, cause memory errors, or cause configuration inconsistencies on the device. Data structures such as FIFO queues can be written safely in safe languages such as Java and ML but these languages do not allow the access to the low-level resources that an OS programmer needs. Therefore, safe OS components require a language that combines the safety of Java with the low-level control of C. My research formalizes the concurrency, locks, and system state needed by the safety-critical areas of a device driver. These formal concepts are built on top of an abstract syntax and rules that guarantees basic memory safety using linear and singleton types to implement safe memory load and store operations. I proved that the improved abstract machine retains the property of soundness, which means that all well-typed programs will be able to execute until they reach an approved end
Typed assembly languages usually support heap allocation safely, but often rely on an external garbage collector to deallocate objects from the heap and prevent unsafe dangling pointers. Even if the external garbage collector is provably correct, verifying the safety of the interaction between TAL programs and garbage collection is nontrivial. This paper introduces a typed assembly language whose type system is expressive enough to type-check a Cheney-queue copying garbage collector, so that ordinary programs and garbage collection can co-exist and interact inside a single typed language. The only built-in types for memory are linear types describing individual memory words, so that TAL programmers can define their own object layouts, method table layouts, heap layouts, and memory management techniques.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.