Background and purposeStroke rehabilitation does not often integrate both sensory and motor recovery. While subthreshold noise was shown to enhance sensory signal detection at the site of noise application, having a noise-generating device at the fingertip to enhance fingertip sensation and potentially enhance dexterity for stroke survivors is impractical, since the device would interfere with object manipulation. This study determined if remote application of subthreshold vibrotactile noise (away from the fingertips) improves fingertip tactile sensation with potential to enhance dexterity for stroke survivors.MethodsIndex finger and thumb pad sensation was measured for ten stroke survivors with fingertip sensory deficit using the Semmes-Weinstein Monofilament and Two-Point Discrimination Tests. Sensation scores were measured with noise applied at one of three intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as without noise at beginning (Pre) and end (Post) of the testing session.ResultsVibrotactile noise of all intensities and locations instantaneously and significantly improved Monofilament scores of the index fingertip and thumb tip (p < .01). No significant effect of the noise was seen for the Two-Point Discrimination Test scores.ConclusionsRemote application of subthreshold (imperceptible) vibrotactile noise at the wrist and dorsal hand instantaneously improved stroke survivors’ light touch sensation, independent of noise location and intensity. Vibrotactile noise at the wrist and dorsal hand may have enhanced the fingertips’ light touch sensation via stochastic resonance and interneuronal connections. While long-term benefits of noise in stroke patients warrants further investigation, this result demonstrates potential that a wearable device applying vibrotactile noise at the wrist could enhance sensation and grip ability without interfering with object manipulation in everyday tasks.
Hand motor impairment persists after stroke. Sensory inputs may facilitate recovery of motor function. This pilot study tested the effectiveness of tactile sensory noise in improving hand motor function in chronic stroke survivors with tactile sensory deficits, using a repeated measures design. Sensory noise in the form of subthreshold, white noise, mechanical vibration was applied to the wrist skin during motor tasks. Hand dexterity assessed by the Nine Hole Peg Test and the Box and Block Test and pinch strength significantly improved when the sensory noise was turned on compared with when it was turned off in chronic stroke survivors. The subthreshold sensory noise to the wrist appears to induce improvements in hand motor function possibly via neuronal connections in the sensoriomotor cortex. The approach of applying concomitant, unperceivable mechanical vibration to the wrist during hand motor tasks is easily adoptable for clinic use as well as unsupervised home use. This pilot study suggests a potential for a wristband-type assistive device to complement hand rehabilitation for stroke survivors with sensorimotor deficit.
Many stroke survivors suffer from impaired hand function. Biomechanics of hand grip suggests that abnormally directed grip force can hamper gripping abilities and hand function. This study examined the relation between the ability to precisely direct fingertip force and clinical hand function scores among individuals affected by stroke. Specifically, clinical hand function tests of the Fugl-Meyer, Chedoke McMaster, and Box and Block Test were used, since they involve various hand movements required for activities of daily living. Digit force direction during static grip was recorded using multiaxial load cells. Data for 59 chronic stroke survivors were analyzed. We found that larger angular deviation of digit force from the normal direction was significantly associated with lower hand functional levels (p<.001 for all three clinical tests). Particularly, stroke survivors whose digit force deviated more than 21° from the normal direction could not achieve the normal level of Fugl-Meyer or Chedoke or move more than 4 blocks in a minute. The biomechanics of the way digit force direction affects hand grip function is described. In addition, underlying mechanisms for altered digit force direction post stroke are postulated, including impaired somatosensation and abnormal neural input to muscles. In summary, this study identifies a new biomechanical marker for hand functional level and recovery. Future interventions may focus on correcting digit force direction to improve hand functional outcome.
Grip surface condition should be considered for clinical assessments, biomechanical investigation, and motor control studies to ensure consistency in measurements and validity of comparisons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.