The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76–80%), ticarcillin-clavulanate (58–76%), and piperacillin-tazobactam (48–50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.
A unique strain of Vibrio parahaemolyticus (designated as VP AHPND) causes acute hepatopancreatic necrosis disease (AHPND), a deadly bacterial disease associated with mass mortality in cultured shrimps since 2009. AHPND is responsible for severe economic losses worldwide, causing multimillion-dollar loss annually. Because of the rapid and high mortality rates in shrimps, substantial research has been carried out to develop rapid detection techniques. Also, recent technological advances such as the nextgeneration sequencing (NGS) have made it possible to elucidate relevant information about a pathogen in a single assay. This review summarizes the current research pertaining to VP AHPND , focusing on diagnosis and contribution of NGS technologies in the genomic studies of AHPND.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.