The South American fruit fly Anastrepha fraterculus (Wiedemann) is a complex of cryptic species, the so-called “Anastrepha fraterculus complex”, for which eight morphotypes are currently recognized. A previous analysis of ITS1 in samples of the Anastrepha fraterculus complex, while revealing high distinctiveness among samples from different localities of South America, Central America, and Mexico, no direct association was made between sequence type and morphotype. In the present report, a correlated analysis of morphometry and ITS1 data involved individuals belonging to the same population samples. Although showing a low level of intra-populational nucleotide variability, the ITS1 analysis indicated numerous inter-population sequence type variants. Morphotypes identified by morphometric analysis based on female wing shape were highly concordant with ITS1 genetic data. The correlation of genetic divergence and morphological differences among the tested samples gives strong evidence of a robust dataset, thereby indicating the existence of various taxonomic species within the A. fraterculus complex. However, the data revealed genetic and morphological variations in some regions, suggesting that further analysis is still required for some geographic regions.
The endosymbiont Wolbachia is efficiently transmitted from females to their progenies, but horizontal transmission between different taxa is also known to occur. Aiming to determine if horizontal transmission might have occurred between Anastrepha fruit flies and associated braconid wasps, infection by Wolbachia was screened by amplification of a fragment of the wsp gene. Eight species of the genus Anastrepha were analyzed, from which six species of associated parasitoid wasps were recovered. The endosymbiont was found in seven Anastrepha species and in five species of braconids. The WSP Typing methodology detected eight wsp alleles belonging to Wolbachia supergroup A. Three were already known and five were new ones, among which four were found to be putative recombinant haplotypes. Two samples of Anastrepha obliqua and one sample of Doryctobracon brasiliensis showed multiple infection. Single infection by Wolbachia was found in the majority of samples. The distribution of Wolbachia harboring distinct alleles differed significantly between fruit flies and wasps. However, in nine samples of fruit flies and associated wasps, Wolbachia harbored the same wsp allele. These congruences suggest that horizontal transfer of Wolbachia might have occurred in the communities of fruit flies and their braconid parasitoids.
Infection by Wolbachia was described previously in eleven species of Anastrepha fruit flies some of which are important pests of fruticulture. One such species is the nominal Anastrepha fraterculus, the South American fruit fly, which actually comprises a complex of cryptic species. The suggestions of using Wolbachia for the control of these pest species, make imperative a more precise characterization of the existing strains of the bacteria. In this study, population samples of the A. fraterculus complex from Brazil, Argentina, Peru, Ecuador, Colombia, Guatemala and Mexico were analyzed for Wolbachia infection. The bacteria were genotyped by the MLST and WSP Typing methodologies. All samples were infected with Wolbachia of supergroup "A". For each of the five MLST genes, unique as well as already known alleles were detected. Nineteen sequence types for the concatenated sequences of the five MLST genes, and twenty wsp alleles were found in the samples. Host-specific haplotypes, shared strains among distinct hosts, and more than one strain of Wolbachia were found in some population samples. Recombination among the MLST genes and intragenic recombination between wsp haplotypes was rare. Phylogenetic analysis showed a great similarity among the Wolbachia strains in the A. fraterculus complex. However, some strains of Wolbachia are found throughout the Neotropical Region and there are specific strains in determined geographical areas.
Análise do ITS1 do DNA ribossômico em espécies do complexo Anastrepha fraterculus (Diptera: Tephritidae).
Figueiredo J.V.A., Perondini A.L.P., Ruggiro EM., Prezotto LF. and Selivon D. (2011). External eggshell morphology of Anastrepha fruit flies (Diptera: Tephritidae). —Acta Zoologica (Stockholm) 00:1–9. The eggshell external morphology of Anastrepha species of different taxonomic intrageneric groups was determined by light and scanning electron microscopy. The eggs of Anastrepha alveata Stone and A. consobrina (Loew) are described for the first time, and a more detailed description of previously studied eggs from A. amita Zucchi, A. pickeli Lima, A. bistrigata Bezzi, A. grandis (Macquart), A. obliqua (Macquart), A. pseudoparallela (Loew), A. striata Schiner, A. suspensa (Loew), and A. zenildae Zucchi is presented. Several relatively plastic morphological characters of the eggs were discerned, such as length, width, tapering, curvature, chorion ornamentation, respiratory lobes, and position of the micropyle. Scores were attributed to these characters, allowing a comparison of egg morphology among 17 species of Anastrepha. A cluster analysis based on these scores did not group the eggs according to the taxonomic intrageneric groups of the species. Nonetheless, this analysis indicated that the egg of each species can be described by a set of morphological scores. The possibility of species identificaton using immature stages will be of great help for the taxonomy of Anastrepha fruit flies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.