T he metabolic syndrome comprises a cluster of risk factors, including obesity, insulin resistance, hepatic steatosis, and dyslipidemia. It is associated with a variety of cardiovascular diseases such as atherosclerosis, myocardial infarction, and stroke.1 Chronic, low-grade inflammation in key metabolic organs such as the liver and visceral adipose tissue (VAT) Background-Costimulatory cascades such as the CD40L-CD40 dyad enhance immune cell activation and inflammation during atherosclerosis. Here, we tested the hypothesis that CD40 directly modulates traits of the metabolic syndrome in diet-induced obesity in mice. Methods and Results-To induce the metabolic syndrome, wild-type or CD40 −/− mice consumed a high-fat diet for 20 weeks. Unexpectedly, CD40−/− mice exhibited increased weight gain, impaired insulin secretion, augmented accumulation of inflammatory cells in adipose tissue, and enhanced proinflammatory gene expression. This proinflammatory and adverse metabolic phenotype could be transplanted into wild-type mice by reconstitution with CD40-deficient lymphocytes, indicating a major role for CD40 in T or B cells in this context. Conversely, therapeutic activation of CD40 signaling by the stimulating antibody FGK45 abolished further weight gain during the study, lowered glucose levels, improved insulin sensitivity, and suppressed adipose tissue inflammation. Mechanistically, CD40 activation decreased the expression of proinflammatory cytokines in T cells but not in B cells or macrophages. Finally, repopulation of lymphocyte-free Rag1 −/− mice with CD40 −/− T cells provoked dysmetabolism and inflammation, corroborating a protective role of CD40 on T cells in the metabolic syndrome. Finally, levels of soluble CD40 showed a positive association with obesity in humans, suggesting clinical relevance of our findings. Conclusions-We present the surprising finding that CD40 deficiency on T cells aggravates whereas activation of CD40 signaling improves adipose tissue inflammation and its metabolic complications. Therefore, positive modulation of the CD40 pathway might describe a novel therapeutic concept against cardiometabolic disease. T-regulatory (T reg ) cells, CD8 + T cells, and related chemokines and cytokines such as RANTES (regulated on activation normal T cell expressed and secreted) and interferon-γ (IFNγ) colocalize within the inflammatory cell compartment in adipose tissue. 7 In lean adipose tissue, the vast majority of T lymphocytes share features of anti-inflammatory, interleukin (IL)-13-, IL-4-, and IL-10-secreting Th2 or T reg cells. 8In obesity, proinflammatory Th1 cells expressing IFNγ overwhelm Th2 cells.9 Th1 cells, in turn, activate proinflammatory cytokine-secreting macrophages and promote their conversion from M2-like, IL-10-secreting, alternatively activated macrophages to classically activated, M1-like macrophages. 10,11Despite description of the kinetics of cellular infiltration and the associated cytokine/chemokine profiles during the development of obesity, the underlying cause modu...
During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors.
Cushing’s disease (CD) is an endocrine disorder originated by a corticotroph tumor. It is linked with high mortality and morbidity due to chronic hypercortisolism. Treatment goals are to control cortisol excess and achieve long-term remission, therefore, reducing both complications and patient’s mortality. First-line of treatment for CD is pituitary’s surgery. However, 30% of patients who undergo surgery experience recurrence in long-term follow-up. Persistent or recurrent CD demands second-line treatments, such as pituitary radiotherapy, adrenal surgery, and/or pharmacological therapy. The latter plays a key role in cortisol excess control. Its targets are inhibition of adrenocorticotropic hormone (ACTH) production, inhibition of adrenal steroidogenesis, or antagonism of cortisol action at its peripheral receptor. Retinoic acid (RA) is a metabolic product of vitamin A (retinol) and has been studied for its antiproliferative effects on corticotroph tumor cells. It has been shown that this drug regulates the expression of pro-opiomelanocortin (POMC), ACTH secretion, and tumor growth in corticotroph tumor mouse cell lines and in the nude mice experimental model, via inhibition of POMC transcription. It has been shown to result in tumor reduction, normalization of cortisol levels and clinical improvement in dogs treated with RA for 6 months. The orphan nuclear receptor COUP-TFI is expressed in normal corticotroph cells, but not in corticotroph tumoral cells, and inhibits RA pathways. A first clinical human study demonstrated clinical and biochemical effectiveness in 5/7 patients treated with RA for a period of up to 12 months. In a recent second clinical trial, 25% of 16 patients achieved eucortisolemia, and all achieved a cortisol reduction after 6- to 12-month treatment. The goal of this review is to discuss in the context of the available and future pharmacological treatments of CD, RA mechanisms of action on corticotroph tumor cells, and future perspectives, focusing on potential clinical implementation.
Retinoic acid (RA), an active metabolite of Vitamin A, and bone morphogenetic protein 4 (BMP-4) pathways control the transcription of pro-opiomelanocortin (Pomc), the precursor of ACTH. We describe a novel mechanism by which RA and BMP-4 act together in the context of pituitary corticotroph tumoral cells to regulate Pomc transcription. BMP-4 and RA exert a potentiated inhibition on Pomc gene expression. This potentiation of the inhibitory action on Pomc transcription was blocked by the inhibitory SMADs of the BMP-4 pathway (SMAD6 and SMAD7), a negative regulator of BMP-4 signaling (TOB1) and a blocker of RA pathway (COUP-TFI). AtT-20 corticotrophinoma cells express RA receptors (RARB, RXRA and RXRG) which associate with factors of BMP-4 (SMAD4 and SMAD1) signaling cascade in transcriptional complexes that block Pomc transcription. COUP-TFI and TOB1 disrupt these complexes. Deletions and mutations of the Pomc promoter and a specific DNA-binding assay show that the complexes bind to the RARE site in the Pomc promoter. The enhanced inhibitory interaction between RA and BMP-4 pathways occurs also in another relevant corticotroph gene promoter, the corticotropin-releasing hormone receptor 1 (Crh-r1). The understanding of the molecules that participate in the control of corticotroph gene expression contribute to define more precise targets for the treatment of corticotrophinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.