Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.
Calendula officinalis is an annual herb from Mediterranean origin which is popularly used in wound healing and as an anti-inflammatory agent. In this study, the ethanolic extract, the dichloromethane, and hexanic fractions of the flowers from plants growing in Brazil were produced. The angiogenic activity of the extract and fractions was evaluated through the chorioallantoic membrane and cutaneous wounds in rat models. The healing activity of the extract was evaluated by the same cutaneous wounds model through macroscopic, morphometric, histopathologic, and immunohistochemical analysis. The antibacterial activity of the extract and fractions was also evaluated. This experimental study revealed that C. officinalis presented anti-inflammatory and antibacterial activities as well as angiogenic and fibroplastic properties acting in a positive way on the inflammatory and proliferative phases of the healing process.
Soil property and class maps for the continent of Africa were so far only available at very generalised scales, with many countries not mapped at all. Thanks to an increasing quantity and availability of soil samples collected at field point locations by various government and/or NGO funded projects, it is now possible to produce detailed pan-African maps of soil nutrients, including micro-nutrients at fine spatial resolutions. In this paper we describe production of a 30 m resolution Soil Information System of the African continent using, to date, the most comprehensive compilation of soil samples ($$N \approx 150,000$$ N ≈ 150 , 000 ) and Earth Observation data. We produced predictions for soil pH, organic carbon (C) and total nitrogen (N), total carbon, effective Cation Exchange Capacity (eCEC), extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), zinc (Zn)—silt, clay and sand, stone content, bulk density and depth to bedrock, at three depths (0, 20 and 50 cm) and using 2-scale 3D Ensemble Machine Learning framework implemented in the (Machine Learning in ) package. As covariate layers we used 250 m resolution (MODIS, PROBA-V and SM2RAIN products), and 30 m resolution (Sentinel-2, Landsat and DTM derivatives) images. Our fivefold spatial Cross-Validation results showed varying accuracy levels ranging from the best performing soil pH (CCC = 0.900) to more poorly predictable extractable phosphorus (CCC = 0.654) and sulphur (CCC = 0.708) and depth to bedrock. Sentinel-2 bands SWIR (B11, B12), NIR (B09, B8A), Landsat SWIR bands, and vertical depth derived from 30 m resolution DTM, were the overall most important 30 m resolution covariates. Climatic data images—SM2RAIN, bioclimatic variables and MODIS Land Surface Temperature—however, remained as the overall most important variables for predicting soil chemical variables at continental scale. This publicly available 30-m Soil Information System of Africa aims at supporting numerous applications, including soil and fertilizer policies and investments, agronomic advice to close yield gaps, environmental programs, or targeting of nutrition interventions.
Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent’s land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.