The central nervous system seems to have an important role in fatigue and exercise tolerance. Novel noninvasive techniques of neuromodulation can provide insights on the relationship between brain function and exercise performance. The purpose of this study was to determine the effects of transcranial direct current stimulation (tDCS) on physical performance and physiological and perceptual variables with regard to fatigue and exercise tolerance. Eleven physically active subjects participated in an incremental test on a cycle simulator to define peak power output. During 3 visits, the subjects experienced 3 stimulation conditions (anodal, cathodal, or sham tDCS—with an interval of at least 48 h between conditions) in a randomized, counterbalanced order to measure the effects of tDCS on time to exhaustion at 80% of peak power. Stimulation was administered before each test over 13 min at a current intensity of 2.0 mA. In each session, the Brunel Mood State questionnaire was given twice: after stimulation and after the time-to-exhaustion test. Further, during the tests, the electromyographic activity of the vastus lateralis and rectus femoris muscles, perceived exertion, and heart rate were recorded. RM-ANOVA showed that the subjects performed better during anodal primary motor cortex stimulation (491 ± 100 s) compared with cathodal stimulation (443 ± 11 s) and sham (407 ± 69 s). No significant difference was observed between the cathodal and sham conditions. The effect sizes confirmed the greater effect of anodal M1 tDCS (anodal x cathodal = 0.47; anodal x sham = 0.77; and cathodal x sham = 0.29). Magnitude-based inference suggested the anodal condition to be positive versus the cathodal and sham conditions. There were no differences among the three stimulation conditions in RPE (p = 0.07) or heart rate (p = 0.73). However, as hypothesized, RM- ANOVA revealed a main effect of time for the two variables (RPE and HR: p < 0.001). EMG activity also did not differ during the test accross the different conditions. We conclude that anodal tDCS increases exercise tolerance in a cycling-based, constant-load exercise test, performed at 80% of peak power. Performance was enhanced in the absence of changes in physiological and perceptual variables.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Previous studies have suggested that transcranial direct current stimulation (tDCS) might improve exercise performance and alter psychophysiological responses to exercise. However, it is presently unknown whether this simple technique has similar (or greater) effects on running performance. The purpose of this study was, therefore, to test the hypothesis that, compared with sham and cathodal tDCS, anodal tDCS applied over the M1 region would attenuate perception of effort, improve affective valence, and enhance exercise tolerance, regardless of changes in physiological responses, during maximal incremental exercise. In a double-blind, randomized, counterbalanced design, 13 healthy recreational endurance runners, aged 20–42 years, volunteered to participate in this study. On three separate occasions, the subjects performed an incremental ramp exercise test from rest to volitional exhaustion on a motor-driven treadmill following 20-min of brain stimulation with either placebo tDCS (sham) or real tDCS (cathodal and anodal). Breath-by-breath pulmonary gas exchange and ventilation and indices of muscle hemodynamics and oxygenation were collected continuously during the ramp exercise test. Ratings of perceived exertion (RPE) and affective valence in response to the ramp exercise test were also measured. Compared with sham, neither anodal tDCS nor cathodal tDCS altered the physiological responses to exercise (P > 0.05). Similarly, RPE and affective responses during the incremental ramp exercise test did not differ between the three experimental conditions at any time (P > 0.05). The exercise tolerance was also not significantly different following brain stimulation with either sham (533 ± 46 s) or real tDCS (anodal tDCS: 530 ± 44 s, and cathodal tDCS: 537 ± 40 s; P > 0.05). These results demonstrate that acute tDCS applied over the M1 region did not alter physiological responses, perceived exertion, affective valence, or exercise performance in recreational endurance runners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.