The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L(-1). The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L(-1) showed satisfactory H(2) production performance, but the reactor fed with 25 g L(-1) of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L(-1) when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L(-1). The AFBRs operated with glucose concentrations of 2 and 4 g L(-1) produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.
-The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR) packed with polymeric particulate supports (polystyrene -PS, polyethylene terephthalate -PET, and polyvinyl chloride -PVC). The reactors were operated with a hydraulic retention time (HRT) of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L -1 , resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L -1 . The phenol removal efficiency ranged from 90-100%.
The general purpose of this study was to characterize a biological treatment system for phenol removal in an anoxic fluidized bed reactor (AFBR) that employed nitrate as the final electron acceptor. The average influent phenol concentrations in the study were 52, 107, 201, 335, and 518 mg/L so that phenol was not detected in the effluent for influent concentrations up to 335 mg/L. The removal efficiency dropped to 70% when the AFBR was operated with influent phenol concentrations above 500 mg/L. The ratio of carbon (derived solely from phenol) to nitrate (N-NO(3)) was approximately 1. Hence, the average influent N-NO(3) concentrations in the study were 45, 79, 157, 260, and 362 mg/L, with corresponding nitrogen removal efficiencies of 94%, 89%, 86%, 79%, and 51%. Nitrite accumulation was not observed because the average effluent N-NO(3) concentration during the entire reactor operation period was 1.5 mg/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.