The aim of this work was to develop polymeric nanocapsules intended for the pulmonary delivery of beclomethasone dipropionate using ethyl cellulose or poly(ε-caprolactone). The formulations showed adequate physicochemical characteristics, namely, average diameter lower than 260 nm, low polydispersity index (< 0.2), negative zeta potential, neutral pH values, and encapsulation efficiencies close to 100%. The thermal analysis by DSC suggested that beclomethasone dipropionate encapsulated in the nanocapsules was in an amorphous state. In addition, both ethyl cellulose and poly(ε-caprolactone) nanocapsules were able to delay the drug photodegradation under UVC radiation. The in vitro drug release showed a prolonged release without burst effect using the dialysis bag diffusion technique. Moreover, ethyl cellulose and poly(ε-caprolactone) nanocapsules presented low in vitro cytotoxicity on 3T3 fibroblasts cells. In vivo, the formulations showed no acute pulmonary injury in rats. Therefore, the developed nanocapsules could be considered suitable carriers to be used for beclomethasone dipropionate pulmonary delivery.
Dopamine constitutes about 80% of the content of central catecholamines and has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinsons disease, depression and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to report the structural design of two N-phenylpiperazine derivatives, compound 4: 1-[1-(4-chlorophenyl)-1H-4-pyrazolylmethyl]-4-phenylhexahydropyrazine and compound 5: 1-[1-(4-chlorophenyl)-1H-1,2,3-triazol-4-ylmethyl]-4-phenylhexahydropyrazine, planned to be dopamine ligands, and their dopaminergic action profile. The two compounds were assayed (dose range of 15-40 mg/ kg) in three experimental models: 1) blockade of amphetamine (30 mg/kg, ip)-induced stereotypy in rats; 2) the catalepsy test in mice, and 3) apomorphine (1 mg/kg, ip)-induced hypothermia in mice. Both derivatives induced cataleptic behavior (40 mg/kg, ip) and a hypothermic response (30 mg/kg, ip) which was not prevented by haloperidol (0.5 mg/kg, ip). Compound 5 (30 mg/kg, ip) also presented a synergistic hypothermic effect with apomorphine (1 mg/kg, ip). Only compound 4 (30 mg/kg, ip) significantly blocked the amphetamine-induced stereotypy in rats. The N-phenylpiperazine derivatives 4 and 5 seem to have a peculiar profile of action on dopaminergic functions. On the basis of the results of catalepsy and amphetamine-induced stereotypy, the compounds demonstrated an inhibitory effect on dopaminergic behaviors. However, their hypothermic effect is compatible with the stimulation of dopaminergic function which seems not to be mediated by D 2 /D 3 receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.