Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton , and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified . However, eukaryotic phytoplankton probably produce most of Earth's DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution.
SummaryApproximately one-third of volatile organic compounds (VOCs) emitted to the atmosphere consists of isoprene, originating from the terrestrial and marine biosphere, with a profound effect on atmospheric chemistry. However, isoprene provides an abundant and largely unexplored source of carbon and energy for microbes. The potential for isoprene degradation in marine and estuarine samples from the Colne Estuary, UK, was investigated using DNA-Stable Isotope Probing (DNA-SIP). Analysis at two timepoints showed the development of communities dominated by Actinobacteria including members of the genera Mycobacterium, Rhodococcus, Microbacterium and Gordonia. Representative isolates, capable of growth on isoprene as sole carbon and energy source, were obtained from marine and estuarine locations, and isoprenedegrading strains of Gordonia and Mycobacterium were characterised physiologically and their genomes were sequenced. Genes predicted to be required for isoprene metabolism, including four-component isoprene monooxygenases (IsoMO), were identified and compared with previously characterised examples. Transcriptional and activity assays of strains growing on isoprene or alternative carbon sources showed that growth on isoprene is an inducible trait requiring a specific IsoMO. This study is the first to identify active isoprene degraders in estuarine and marine environments using DNA-SIP and to characterise marine isoprene-degrading bacteria at the physiological and molecular level.
Isoprene is a highly abundant climate-active gas and a carbon source for some bacteria. Analyses of the genes encoding isoprene monooxygenase (IsoMO) indicate this enzyme is a soluble diiron center monooxygenase in the same family of oxygenases as soluble methane monooxygenase, alkene monooxygenase, and toluene monooxygenase.
Isoprene is a climate-active gas, largely produced by trees, which is released from the biosphere in amounts equivalent to those of methane and all other volatile organic compounds combined. Bacteria found in many environments, including soils and on the surface of leaves of isoprene-producing trees, can grow on isoprene and thus may represent a significant biological sink for this globally significant volatile compound and remove isoprene before it escapes to the atmosphere, thus reducing its potency as a climate-active gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.