This paper reports on the electrodeposition of aluminium on several substrates from the air- and water-stable ionic liquids 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)amide ([C(3)mpip][NTf(2)]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([C(4)mpyr][NTf(2)]), which contain anhydrous AlCl(3). At an AlCl(3) concentration of 0.75 molal, no evidence for aluminium electrodeposition was observed in either system at room temperature. However, aluminium electrodeposition becomes feasible upon heating the samples to 80 degrees C. Aluminium electrodeposition from bis(trifluoromethylsulfonyl)amide-based ionic liquids that contain AlCl(3) has previously been shown to be very dependent upon the AlCl(3) concentration and has not been demonstrated at AlCl(3) concentrations below 1.13 molal. The dissolution of AlCl(3) in [C(3)mpip][NTf(2)] and [C(4)mpyr][NTf(2)] was studied by variable-temperature (27)Al NMR spectroscopy to gain insights on the electroactive species responsible for aluminium electrodeposition. A similar change in the aluminium speciation with temperature was observed in both ionic liquids, thereby indicating that the chemistry was similar in both. The electrodeposition of aluminium was shown to coincide with the formation of an asymmetric four-coordinate aluminium-containing species with an (27)Al chemical shift of delta=94 and 92 ppm in the [C(3)mpip][NTf(2)]-AlCl(3) and [C(4)mpyr][NTf(2)]-AlCl(3) systems, respectively. It was concluded that the aluminium-containing species that give rise to these resonances corresponds to the electroactive species and was assigned to [AlCl(3)(NTf(2))](-).
Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials.Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200°C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.