For well over twenty centuries the muscle wasting (sarcopenia) and weakness (dynapenia) that occurs with old age has been a predominant concern of mankind. Exercise has long been suggested as a treatment to combat sarcopenia and dynapenia, as it exerts effects on both the nervous and muscular systems that are critical to positive physiological and functional adaptations (e.g., enhanced muscle strength). For more than two decades scientists have recognized the profound role that progressive resistance exercise training can have on increasing muscle strength, muscle size and functional capacity in older adults. In this review article we discuss how resistance exercise training can be used in the management and prevention of sarcopenia and dynapenia. We first provide an overview of the evidence for this notion and highlight certain critical factors— namely exercise intensity, volume and progression— that are key to optimizing the resistance exercise prescription. We then highlight how many, if not most, of the commonly prescribed exercise programs for seniors are not the ‘best practices’, and subsequently present easy-to-read guidelines for a well-rounded resistance exercise training program designed for the management and prevention of sarcopenia and dynapenia, including example training programs for the beginner through the advanced senior resistance exerciser. These guidelines have been written for the academician as well as the student and health care provider across a variety of disciplines, including those in the long term care industry, such as wellness instructors or activity directors.
Contrary to our hypothesis, we observed no effect of anodal tDCS and no impairment in elbow flexor voluntary activation capacity in the very old. Whether anodal tDCS would exert a positive effect and support our initial hypothesis in another muscle group that does exhibit impairments in voluntary activation in older adults is a question that is still to be addressed.
Background
Approximately 35% of individuals > 70 years have mobility limitations. Historically, it was posited lean mass and muscle strength were major contributors to mobility limitations, but recent findings indicate lean mass and muscle strength only moderately explain mobility limitations. One likely reason is that lean mass and muscle strength do not necessarily incorporate measures globally reflective of motor function (defined as the ability to learn, or to demonstrate, the skillful and efficient assumption, maintenance, modification, and control of voluntary postures and movement patterns). In this study we determined the relative contribution of lean mass, muscle strength, and the four square step test, as an index of lower extremity motor function, in explaining between-participant variance in mobility tasks.
Methods
In community-dwelling older adults (
N
= 89; 67% women; mean 74.9 ± 6.7 years), we quantified grip and leg extension strength, total and regional lean mass, and time to complete the four square step test. Mobility was assessed via 6-min walk gait speed, stair climb power, 5x-chair rise time, and time to complete a complex functional task. Multifactorial linear regression modeling was used to determine the relative contribution (via semi-partial r
2
) for indices of lean mass, indices of muscle strength, and the four square step test.
Results
When aggregated by sex, the four square step test explained 17–34% of the variance for all mobility tasks (
p
< 0.01). Muscle strength explained ~ 12% and ~ 7% of the variance in 6-min walk gait speed and 5x-chair rise time, respectively (
p
< 0.02). Lean mass explained 32% and ~ 4% of the variance in stair climb power and complex functional task time, respectively (p < 0.02). When disaggregated by sex, lean mass was a stronger predictor of mobility in men.
Conclusion
The four square step test is uniquely associated with multiple measures of mobility in older adults, suggesting lower extremity motor function is an important factor for mobility performance.
Trial registration
NCT02505529
–2015/07/22.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.