For well over twenty centuries the muscle wasting (sarcopenia) and weakness (dynapenia) that occurs with old age has been a predominant concern of mankind. Exercise has long been suggested as a treatment to combat sarcopenia and dynapenia, as it exerts effects on both the nervous and muscular systems that are critical to positive physiological and functional adaptations (e.g., enhanced muscle strength). For more than two decades scientists have recognized the profound role that progressive resistance exercise training can have on increasing muscle strength, muscle size and functional capacity in older adults. In this review article we discuss how resistance exercise training can be used in the management and prevention of sarcopenia and dynapenia. We first provide an overview of the evidence for this notion and highlight certain critical factors— namely exercise intensity, volume and progression— that are key to optimizing the resistance exercise prescription. We then highlight how many, if not most, of the commonly prescribed exercise programs for seniors are not the ‘best practices’, and subsequently present easy-to-read guidelines for a well-rounded resistance exercise training program designed for the management and prevention of sarcopenia and dynapenia, including example training programs for the beginner through the advanced senior resistance exerciser. These guidelines have been written for the academician as well as the student and health care provider across a variety of disciplines, including those in the long term care industry, such as wellness instructors or activity directors.
We tested the hypothesis that the nervous system, and the cortex in particular, is a critical determinant of muscle strength/weakness and that a high level of corticospinal inhibition is an important neurophysiological factor regulating force generation. A group of healthy individuals underwent 4 wk of wrist-hand immobilization to induce weakness. Another group also underwent 4 wk of immobilization, but they also performed mental imagery of strong muscle contractions 5 days/wk. Mental imagery has been shown to activate several cortical areas that are involved with actual motor behaviors, including premotor and M1 regions. A control group, who underwent no interventions, also participated in this study. Before, immediately after, and 1 wk following immobilization, we measured wrist flexor strength, voluntary activation (VA), and the cortical silent period (SP; a measure that reflect corticospinal inhibition quantified via transcranial magnetic stimulation). Immobilization decreased strength 45.1 ± 5.0%, impaired VA 23.2 ± 5.8%, and prolonged the SP 13.5 ± 2.6%. Mental imagery training, however, attenuated the loss of strength and VA by ∼50% (23.8 ± 5.6% and 12.9 ± 3.2% reductions, respectively) and eliminated prolongation of the SP (4.8 ± 2.8% reduction). Significant associations were observed between the changes in muscle strength and VA (r = 0.56) and SP (r = -0.39). These findings suggest neurological mechanisms, most likely at the cortical level, contribute significantly to disuse-induced weakness, and that regular activation of the cortical regions via imagery attenuates weakness and VA by maintaining normal levels of inhibition.
Dual-energy X-ray absorptiometry (DXA) derived measures of lean mass demonstrate strong associations with magnetic resonance imaging (MRI) derived measures of muscle volume (MV) in cross-sectional studies, however, few studies have compared changes in response to an intervention. The purpose of this study was to determine the accuracy of DXA at detecting changes in lean mass, using MRI-derived MV as a reference standard. 10 male and 16 female subjects (29.2 ± 9.5 years) underwent DXA and MRI scans before and after a 10-week resistance training intervention. DXA thigh lean mass was compared to MRI mid-thigh MV, and percent change in size was compared between MRI and DXA. There was a strong correlation between measures cross-sectionally ( r = 0.89) in agreement with previous investigations. However, there was a modest correlation of percentage change over time between methods ( r = 0.49). Bland-Altman plots revealed that the amount of random error increased as the magnitude of the change from baseline increased. DXA measures of change in lean mass were modestly associated with MRI measures of change in MV. While there are several advantages to using DXA for the measurement of lean mass, the inability to accurately detect changes over time calls into question its use in clinical trials.
These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex.
This Brief Report describes a pilot study of the effect of 12 weeks of stationary bicycle high-intensity interval training, stationary bicycle moderate-intensity continuous training, and resistance training on cardiorespiratory, muscular, and physical function measures in insufficiently-active older adults (N=14; 66.4±3.9 years; 3 male, 11 female). After baseline testing, participants were randomly assigned to one of the exercise groups. High-intensity interval training and moderate-intensity continuous training had small-to-large effect sizes on cardiorespiratory/endurance and physical function measures, but very small effect sizes on muscular measures. Resistance training had small-to-large effect sizes on cardiorespiratory, muscular, and physical function measures. This pilot study should be interpreted cautiously, but findings suggest that resistance exercise may be the most effective of the three studied exercise strategies for older adults as it can induce beneficial adaptations across multiple domains. These effect sizes can be used to determine optimal sample sizes for future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.