Abstract. Transformation of isoprene coupled with autooxidation of S IV in aqueous solutions was studied experimentally and by chemical-kinetic modelling over a broad range of solution acidities (pH=3-9) to complement the research on aqueous-phase and heterogeneous transformation of isoprene reported recently by many laboratories. Isoprene significantly slowed down the auto-oxidation in acidic and basic solutions, and accelerated it slightly in neutral solutions. Simultaneously, production of sulphate ions and formation of solution acidity were significantly reduced. Formation of sulphite and sulphate derivatives of isoprene -sulphurous acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=163), sulphurous acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=165), sulphuric acid mono-(2-methyl-4-oxo-but-2-enyl) ester (m/z=179), sulphuric acid mono-(4-hydroxy-2-methyl-but-2-enyl) ester (m/z=181), and possible structural isomers of these species -was indicated by electrospray ionisation mass spectrometric analysis of postreaction mixtures. The experimental results were explained by changes in a subtle quantitative balance of three superimposed processes whose rates depended in different manner on the acidity of reacting solutions -the scavenging of sulphoxy radical-anions by isoprene, the formation of sulphoxy radical-anions during further reactions of isoprene radicals, and the auto-oxidation of S IV itself. A chemical mechanism based on this idea was explored numerically to show good agreement with experimental data. In basic and neutral solutions, the model overestimated the consumption of isoprene, probably because reactions of primary sulphite and sulphate derivatives of isoprene with sulphoxy radical-anions were not included. Interaction of isoprene Correspondence to: K. J. Rudziński (kjrudz@ichf.edu.pl) with sulphur(IV) species and oxygen can possibly result in formation of new organosulphate and organosulphite components of atmospheric aerosols and waters, and influence the distribution of reactive sulphur and oxygen species in isoprene-emitting organisms exposed to S IV pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.