The structure and function of the pharyngeal jaw apparatus (PJA) and postpharyngeal alimentary tract of Arrhamphus sclerolepis krefftii, an herbivorous hemiramphid, were investigated by dissection, light and scanning electron microscopy, and X-ray analysis of live specimens. A simple model of PJA operation is proposed, consisting of an adductive power stroke of the third pharyngobranchial that draws it posteriorly while the fifth ceratobranchial is adducted, and a return stroke in which the third pharyngobranchial bone is drawn anteriorly during abduction of the fifth ceratobranchial. Teeth in the posteromedial region of the PJA are eroded into an occlusion zone where the teeth of the third pharyngobranchial are spatulate incisiform and face posteriorly in opposition to the rostrally oriented spatulate incisiform teeth in the wear zone of the fifth ceratobranchial. The shape of the teeth and their pedestals (bone of attachment) is consistent with the model and with the forces likely to operate on the elements of the PJA during mastication. The role of pharyngeal tooth replacement in maintaining the occlusal surfaces in the PJA during growth is described. The postpharyngeal alimentary tract of A. sclerolepis krefftii comprises a stomachless cylinder that attenuates gradually as it passes straight to the anus, interrupted only by a rectal valve. The ratio of gut length to standard length is about 0.5. Despite superficial similarities to the cichlid PJA (Stiassny and Jensen [1987] Bull Mus Comp Zool 151:269-319), the hemiramphid PJA differs in the fusion of the third pharyngobranchial bones, teeth in the second pharyngobranchials and the fifth ceratobranchial face anteriorly, the presence of a slide-like diarthroses between the heads of the fourth epibranchials and the third pharyngobranchial, the occlusion zone of constantly wearing teeth, and the unusual form of the muscularis craniopharyngobranchialis. The functional relationship between these structures is explained and the consequence for the fish of a complex PJA and a simple gut is discussed.
To elucidate the trophic status of hemiramphids, the diets of three species from subtropical south-east Queensland were investigated. All undergo a marked ontogenetic trophic shift from an animal to plant diet, which occurred between 50 and 70 mm standard length (Ls) for Arrhamphus sclerolepis krefftii (freshwater) and between 80 and 110 mm Ls for both Hyporhamphus regularis ardelio and H. quoyi (both marine). After the ontogenetic shift, the diet of A. sclerolepis krefftii is dominated by filamentous algae, whereas the diet of the two marine species is dominated by Zostera capricorni. The two marine species feed mainly during the day, with gut fullness dropping markedly after dusk. Neither showed evidence of a diel trophic shift between herbivory and carnivory that has been reported for other hemiramphids. The lack of diel trophic switching in these subtropical hemiramphids may suggest that latitudinal effects on daylength and/or water temperature may influence the extent to which hemiramphids switch periodically to animal prey from an otherwise essentially herbivorous diet in order to balance their nutrient requirements.
The stable isotope values for a range of size classes of Hyporhamphus regularis ardelio from Moreton Bay, south-east Australia were determined. There was a positive linear relationship between d 13 C and standard length (L S ) (d 13 C ¼ 0Á034 L S À 16Á23; r 2 ¼ 0Á78). d 13 C ranged from À8Á48 to À17Á29‰ with the smallest size class (50 mm L S ) being on average 1Á04‰ enriched with respect to that of zooplankton (Temora turbinata) and 7Á97‰ depleted compared to Zostera capricorni. d 13 C was positively correlated with L S (P < 0Á01) (more enriched with increasing L S ) with those fish of the largest size class (225 mm L S ) being 9Á86 and 0Á84‰ enriched than T. turbinata and Z. capricorni, respectively. There was no detectable trend in d 15 N values with L S (P > 0Á01) with d 15 N, ranging from 9Á18 to 11Á00‰. Fish of all size classes were on average 2Á32 and 7Á63‰ more enriched than zooplankton and seagrass, respectively. Carbon isotope data indicate that H. r. ardelio commence life as carnivores and change to a diet in which seagrass is the primary carbon source. The dependence on animal matter, however, is always present. Due to the low percentage of nitrogen in Z. capricorni (2Á5%) compared to zooplankton (9Á1%) it appears that nitrogen from zooplankton is necessary throughout their life history with the carbon requirements for these fish coming chiefly from Z. capricorni. # 2005 The Fisheries Society of the British Isles
Needlefishes (Beloniformes) were observed employing a range of stalking and attacking behaviours to attack schools of bait fishes ranging from the use of tactics common to predatory fishes to a novel behaviour: the use of leaping, aerial attacks. These aerial attacks are suggested to serve two purposes: to extend the attack range of the needlefishes and to reduce their prey's potential for evasion. Furthermore, a third purpose is hypothesized that the needlefishes are taking advantage of Snell's Window, an optical effect which may mask their approach to their prey.
Development of the pharyngeal dentition of two herbivorous halfbeaks, Hyporhamphus regularis ardelio (Whitley, 1931) and Arrhamphus sclerolepis krefftii (Steindachner, 1867), was examined quantitatively to assess features that might confer their ability to shift their diet from animal to plant material. Toothed area, tooth number, maximum tooth diameter and tooth wear area in both pharyngeal tooth pads of both taxa increased with ontogeny, whereas tooth density decreased. Comparing individuals of the two taxa at similar standard lengths indicated that A. sclerolepis krefftii showed hypertrophy of the majority of pharyngeal characters in relation to H. regularis ardelio of a similar standard length. That A. sclerolepis krefftii is more developmentally advanced than H. regularis ardelio in almost all dentigerous characters studied indicates that pharyngeal development may allow the former to commence herbivory at a smaller standard length than the latter species. The evolutionary and ecological implications of these findings are discussed in the context of a group of fishes that is overexploited worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.