The c2d Spitzer Legacy project obtained images and photometry with both IRAC and MIPS instruments for five large, nearby molecular clouds. Three of the clouds were also mapped in dust continuum emission at 1.1 mm, and optical spectroscopy has been obtained for some clouds. This paper combines information drawn from studies of individual clouds into a combined and updated statistical analysis of star formation rates and efficiencies, numbers and lifetimes for SED classes, and clustering properties. Current star formation efficiencies range from 3% to 6%; if star formation continues at current rates for 10 Myr, efficiencies could reach 15% to 30%. Star formation rates and rates per unit area vary from cloud to cloud; taken together, the five clouds are producing about 260 M ⊙ of stars per Myr. The star formation surface density is more than an order of magnitude larger than would be predicted from the Kennicutt relation used in extragalactic studies, reflecting the fact that those relations apply to larger scales, where more diffuse matter is included in the gas surface density. Measured against the dense gas probed by the maps of dust continuum emission, the efficiencies are much higher, with stellar masses similar to masses of dense gas, and the current stock of dense cores would be exhausted in 1.8 Myr on average. Nonetheless, star formation is still slow compared to that expected in a free fall time, even in the dense cores. The derived lifetime for the Class I phase is 0.54 Myr, considerably longer than some estimates. Similarly, the lifetime for the Class 0 SED class, 0.16 Myr, with the notable exception of the Ophiuchus cloud, is longer than early estimates. If photometry is corrected for estimated extinction before calculating class indicators, the lifetimes drop to 0.44 Myr for Class I and to 0.10 for Class 0. These lifetimes assume a continuous flow through the Class II phase and should be considered median lifetimes or half-lives. Star formation is highly concentrated to regions of high extinction, and the youngest objects are very strongly associated with dense cores. The great majority (90%) of young stars lie within loose clusters with at least 35 members and a stellar density of 1 M ⊙ pc −3 . Accretion at the sound speed from an isothermal sphere over the lifetime derived for the Class I phase could build a star of about 0.25 M ⊙ , given an efficiency of 0.3. Building larger mass stars by using higher mass accretion rates could be problematic, as our data confirm and aggravate the "luminosity problem" for protostars. At a given T bol , the values for L bol are mostly less than predicted by standard infall models and scatter over several orders of magnitude. These results strongly suggest that accretion is time variable, with prolonged periods of very low accretion. Based on a very simple model and this sample of sources, half the mass of a star would be accreted during only 7% of the Class I lifetime, as represented by the eight most luminous objects.
We present the results of a λ = 2.7 mm continuum interferometric survey of 24 young stellar objects in 11 fields. The target objects range from deeply embedded Class 0 sources to optical T Tauri sources. This is the first sub-arcsecond survey of the λ = 2.7 mm dust continuum emission from young, embedded stellar systems. These multi-array observations, utilizing the high dynamic u,v range of the BIMA array, fully sample spatial scales ranging from 0. ′′ 4 to 60 ′′ , allowing the first consistent comparison of dust emission structures in a variety of systems. The images show a diversity of structure and complexity. The optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri, and GM Aurigae) have continuum emission dominated by compact (≤ 1 ′′ ) circumstellar disks. In the cases of HL Tauri and DG Tauri, the disks are resolved. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have continuum emission that is extended and compact. The embedded sources (L1448 IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA 1623, and IRAS 16293-2422) have continuum emission dominated by the extended envelope, typically ≥ 85% of the emission at λ = 2.7 mm. In fact, in many of the deeply embedded systems it is difficult to uniquely isolate the disk emission component from the envelope extending inward to AU size scales. Simple estimates of the circumstellar mass in the optical/infrared and embedded systems range from 0.01-0.08 M ⊙ and 0.04-2.88 M ⊙ , respectively. All of the target embedded objects are in multiple systems with separations on scales of ∼ 30 ′′ or less. Based on the system separation, we place the objects into three categories: separate envelope (separation ≥ 6500 AU), common envelope (separation 150-3000 AU), and common disk (separation ≤ 100 AU). These three groups can be linked with fragmentation events during the star formation process: separate envelopes from prompt initial fragmentation and the separate collapse of a loosely condensed cloud, common envelopes from fragmentation of a moderately centrally condensed spherical system, and common disk from fragmentation of a high angular momentum circumstellar disk.
We have modeled the emission from dust in pre-protostellar cores, including a self-consistent calculation of the temperature distribution for each input density distribution. Model density distributions include Bonnor-Ebert spheres and power laws. The Bonnor-Ebert spheres fit the data well for all three cores we have modeled. The dust temperatures decline to very low values (T d ∼ 7 K) in the centers of these cores, strongly affecting the dust emission. Compared to earlier models that assume constant dust temperatures, our models indicate higher central densities and smaller regions of relatively constant density. Indeed, for L1544, a power-law density distribution, similar to that of a singular, isothermal sphere, cannot be ruled out. For the three sources modeled herein, there seems to be a sequence of increasing central condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and L1544, have spectroscopic evidence for contraction, suggesting an evolutionary sequence for preprotostellar cores.
To study the physical and chemical evolution of ices in solar-mass systems, a spectral survey is conducted of a sample of 41 low-luminosity YSOs (L $ 0:1Y10 L ) using 3Y38 m Spitzer and ground-based spectra. The sample is complemented with previously published Spitzer spectra of background stars and with ISO spectra of well-studied massive YSOs (L $ 10 5 L ). The long-known 6.0 and 6.85 m bands are detected toward all sources, with the Class 0Y type YSOs showing the deepest bands ever observed. The 6.0 m band is often deeper than expected from the bending mode of pure solid H 2 O. The additional 5Y7 m absorption consists of five independent components, which, by comparison to laboratory studies, must be from at least eight different carriers. Much of this absorption is due to simple species likely formed by grain surface chemistry, at abundances of 1%Y30% for CH 3 OH, 3%Y8% for NH 3 , 1%Y5% for HCOOH, $6% for H 2 CO, and $0.3% for HCOO À relative to solid H 2 O. The 6.85 m band has one or two carriers, of which one may be less volatile than H 2 O. Its carrier(s) formed early in the molecular cloud evolution and do not survive in the diffuse ISM. If an NH þ 4 -containing salt is the carrier, its abundance relative to solid H 2 O is $7%, demonstrating the efficiency of low-temperature acid-base chemistry or cosmic-rayYinduced reactions. Possible origins are discussed for enigmatic, very broad absorption between 5 and 8 m. Finally, the same ices are observed toward massive and low-mass YSOs, indicating that processing by internal UV radiation fields is a minor factor in their early chemical evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.