We present the results of a λ = 2.7 mm continuum interferometric survey of 24 young stellar objects in 11 fields. The target objects range from deeply embedded Class 0 sources to optical T Tauri sources. This is the first sub-arcsecond survey of the λ = 2.7 mm dust continuum emission from young, embedded stellar systems. These multi-array observations, utilizing the high dynamic u,v range of the BIMA array, fully sample spatial scales ranging from 0. ′′ 4 to 60 ′′ , allowing the first consistent comparison of dust emission structures in a variety of systems. The images show a diversity of structure and complexity. The optically visible T Tauri stars (DG Tauri, HL Tauri, GG Tauri, and GM Aurigae) have continuum emission dominated by compact (≤ 1 ′′ ) circumstellar disks. In the cases of HL Tauri and DG Tauri, the disks are resolved. The more embedded near-infrared sources (SVS13 and L1551 IRS5) have continuum emission that is extended and compact. The embedded sources (L1448 IRS3, NGC1333 IRAS2, NGC1333 IRAS4, VLA 1623, and IRAS 16293-2422) have continuum emission dominated by the extended envelope, typically ≥ 85% of the emission at λ = 2.7 mm. In fact, in many of the deeply embedded systems it is difficult to uniquely isolate the disk emission component from the envelope extending inward to AU size scales. Simple estimates of the circumstellar mass in the optical/infrared and embedded systems range from 0.01-0.08 M ⊙ and 0.04-2.88 M ⊙ , respectively. All of the target embedded objects are in multiple systems with separations on scales of ∼ 30 ′′ or less. Based on the system separation, we place the objects into three categories: separate envelope (separation ≥ 6500 AU), common envelope (separation 150-3000 AU), and common disk (separation ≤ 100 AU). These three groups can be linked with fragmentation events during the star formation process: separate envelopes from prompt initial fragmentation and the separate collapse of a loosely condensed cloud, common envelopes from fragmentation of a moderately centrally condensed spherical system, and common disk from fragmentation of a high angular momentum circumstellar disk.
We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array (VLA) survey at Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L and ∼33 L , with a median of 0.7 L . This multiplicity study is based on the Ka-band data, having a best resolution of ∼0. 065 (15 AU) and separations out to ∼43 (10000 AU) can be probed. The overall multiplicity fraction (MF) is found to be of 0.40±0.06 and the companion star fraction (CSF) is 0.71±0.06. The MF and CSF of the Class 0 protostars are 0.57±0.09 and 1.2±0.2, and the MF and CSF of Class I protostars are both 0.23±0.08. The distribution of companion separations appears bimodal, with a peak at ∼75 AU and another peak at ∼3000 AU. Turbulent fragmentation is likely the dominant mechanism on >1000 AU scales and disk fragmentation is likely to be the dominant mechanism on <200 AU scales. Toward three Class 0 sources we find companions separated by <30 AU. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50 AU to 400 AU) structures and may be candidates for ongoing disk fragmentation.
In their earliest stages, protostars accrete mass from their surrounding envelopes through circumstellar disks. Until now, the smallest observed protostar-to-envelope mass ratio was about 2.1 (ref. 1). The protostar L1527 IRS is thought to be in the earliest stages of star formation. Its envelope contains about one solar mass of material within a radius of about 0.05 parsecs (refs 3, 4), and earlier observations suggested the presence of an edge-on disk. Here we report observations of dust continuum emission and (13)CO (rotational quantum number J = 2 → 1) line emission from the disk around L1527 IRS, from which we determine a protostellar mass of 0.19 ± 0.04 solar masses and a protostar-to-envelope mass ratio of about 0.2. We conclude that most of the luminosity is generated through the accretion process, with an accretion rate of about 6.6 × 10(-7) solar masses per year. If it has been accreting at that rate through much of its life, its age is approximately 300,000 years, although theory suggests larger accretion rates earlier, so it may be younger. The presence of a rotationally supported disk is confirmed, and significantly more mass may be added to its planet-forming region as well as to the protostar itself in the future.
We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/ submillimeter Array at 0.87 mm at a resolution of ∼0 1 (40 au), including observations with the Very Large Array at 9mm toward 148 protostars at a resolution of ∼0 08 (32 au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are -+ 44.9 3.4 5.8 , -+ 37.0 3.0 4.9 , and -+ 28.5 2.3 3.7 au, respectively, and the mean protostellar dust disk masses are 25.9 -+ 4.0 7.7 , -+ 14.9 2.2 3.8 , -+11.6 1.93.5 Å M , respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87 mm continuum sources plus 42 nondetections) have disk radii greater than 50 au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.