Snow is understood to limit wildlife movements, often being the most important determinant of winter movement for animals in the boreal forest. However, the combined effect of snow and temperature on the movement ecology of animals at high latitudes is less understood. We used GPS-collar data from a small population of wood bison (Bison bison athabascae Rhoads, 1898) in northeastern Alberta, Canada to develop a series of generalized additive mixed models characterizing the effect of cumulative snow depth, daily change in snow depth, and temperature on movement rates. Our most supported model included cumulative snow depth, temperature, and day of winter. Bison movements decreased in the first 75 days of winter during snow accumulation, and dramatically increased in the final 14 days of winter during snow melt. Cumulative snow depth, not daily change in snow depth, reduced wood bison movement rates, and movement rates increased more rapidly in warmer temperatures than in temperatures below -6.4 °C. By quantifying both the direction and magnitude of snow and temperature’s effects on bison movement, our study fills critical knowledge gaps relating to the winter movement ecology of wood bison and contributes to a growing body of knowledge informing their conservation in the Anthropocene.
The nutritional characteristics of food resources play an important role in the foraging behavior of animals and can provide information valuable to their conservation and management. We examined the nutritional ecology of wild water buffalo ( Bubalus arnee ; hereafter “buffalo”) in the Koshi Tappu Wildlife Reserve of Nepal during autumn using a multidimensional nutritional niche framework. We identified 54 plant species as being foraged by buffalo. We found that buffalo consumed graminoids and forbs 2–3 times more frequently than browse items. Proximate analyses of the 16 most frequently foraged plants indicated that buffalo diets were highest in carbohydrate (40.41% ± 1.82%) followed by crude protein (10.52% ± 0.93%) and crude fat (1.68% ± 0.23%). The estimated macronutrient balance (i.e., realized nutrient niche) of the buffalo diet (20.5% protein: 72.8% carbohydrate: 6.7% lipid) was not significantly different than the average balance of all analyzed food items based on 95% confidence regions. Our study suggests that buffalo are likely macronutrient specialists, yet may be generalists in the sense that they feed on a wide range of food items to achieve a nutrient balance similar to that available in forage items. However, the four most frequently consumed items tended to be higher in protein energy than less frequently consumed foods, suggesting some preference for higher protein forage relative to relatively abundant carbohydrates. Although limited in scope, our study provides important information on the nutritional ecology of buffalo, which may be useful for the conservation and management of this endangered species.
Diet is one of the most common traits used to organize species of animals into niches.For ruminant herbivores, the breadth and uniqueness of their dietary niche are placed on a spectrum from browsers that consume woody (i.e., browse) and herbaceous (i.e., forbs) plants, to grazers with graminoid-rich diets. However, seasonal changes in plant availability and quality can lead to switching of their dietary niche, even within species. In this study, we examined whether a population of wood bison (Bison bison athabascae) in northeast Alberta, Canada, seasonally switched their foraging behavior, and if so, whether this was associated with changes in nutrient acquisition. We hypothesized that bison should switch foraging behaviors from grazing in the winter when standing, dead graminoids are the only foliar plants readily available to browsing during spring and summer as nutritious and digestible foliar parts of browse and forbs become available. If bison are switching foraging strategy to maximize protein consumption, then there should be a corresponding shift in the nutritional niche.Alternatively, if bison are eating different plants, but consuming similar amounts of nutrients, then bison are switching their dietary niche to maintain a particular nutrient composition. We found wood bison were grazers in the winter and spring, but switch to a browsing during summer. However, only winter nutrient consumption of consumed plants differed significantly among seasons. Between spring and summer, bison maintained a specific nutritional composition in their diet despite compositional differences in the consumed plants. Our evidence suggests that bison are selecting plants to maintain a target macronutrient composition. We posit that herbivore's can and will switch their dietary niche to maintain a target nutrient composition.
In ecological niche theory, diet is a trait frequently used to place species along a continuum from specialists to generalists. A multidimensional approach to investigating species’ niches has been developed to incorporate nutrition. We apply the concepts of multidimensional nutritional niche theory to the dietary patterns of a widespread, large herbivore, the American bison Bison bison, at various levels of its nutritional niche. Specifically, we sought to estimate dietary niches for female bison at the levels of the forage items they consume and the macronutrients they acquire from those forage items. We assessed how these dietary niches changed seasonally and explored physical and climatic mechanisms that contribute to observed differences in the dietary niches. We also examined dietary differences between the two bison subspecies: wood bison Bison bison athabascae and plains bison Bison bison bison. We compiled data for 16 bison subpopulations using 26 peer‐reviewed publications, government reports, conference proceedings, and graduate theses that described the dietary composition of female bison for analysis of dietary niches. We found that the diets of female bison were, as expected, dominated by graminoids throughout the year, but during the growing season (spring and summer), dietary niches had greater breadth. Their diets were relatively high in carbohydrates, but percentages of dietary lipid and protein increased during the growing season. Further, we found significant increases in consumption of browse items, lipids, and proteins with increasing latitude (†N), and differences between American bison subspecies. Our study provides insight into the fundamental macronutrient niche of the American bison and also provides a framework for the nutritional targets of bison. We show that bison are able to adapt to availability of local forage and that they may consume different items in different proportions in order to regulate nutritional composition of their diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.