We report a study on the plasma-enhanced chemical vapor deposition of silicon carbonitride, as well as the resonant behavior of nanomachined SiCN structures. Films with thicknesses of 1 um, and 200 nm were deposited at varying gas ratios using ammonia (NH3), nitrogen (N2), and diethylsilane (DES) as precursors. X-ray photoelectron spectroscopy revealed high nitrogen and low carbon content in films deposited at high NH3:DES gas flow ratios. Selected samples annealed at varying temperatures experienced shifts in stress towards tensile of Δσ = 235 MPa, 432 MPa, 724 MPa, and 1140 MPa, at annealing temperatures of T = 400 °C, 500 °C, 600 °C, and 700 °C respectively. Infrared spectroscopy reported a loss of incorporated hydrogen as a mechanism of stress modulation. Resonant assaying of cantilevers fabricated from 200 nm-thick SiCN yielded root-modulus-over-density values of √(E/ρ) = 6.95 × 103 m/s and √(E/ρ) = 8.35 × 103 m/s, comparable to those of silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.