Purpose In performing search tasks, the visual system encodes information across the visual field at a resolution inversely related to eccentricity and deploys saccades to place visually interesting targets upon the fovea where resolution is highest. The serial process of fixation, punctuated by saccadic eye movements, continues until the desired target has been located. Loss of central vision restricts the ability to resolve the high spatial information of a target, interfering with this visual search process. We investigate oculomotor adaptations to central visual field loss with gaze-contingent artificial scotomas. Methods Spatial distortions were placed at random locations in 25° square natural scenes. Gaze-contingent artificial central scotomas were updated at the screen rate (75Hz) based on a 250Hz eyetracker. Eight subjects searched the natural scene for the spatial distortion and indicated its location using a mouse-controlled cursor. Results As the central scotoma size increased, the mean search time increased [F(3,28)= 5.27, p= .05] and the spatial distribution of gaze points during fixation increased significantly along the x [F(3,28)= 6.33, p= .002] and y [F(3,28)= 3.32, p= .034] axes. Oculomotor patterns of fixation duration, saccade size and saccade duration did not change significantly, regardless of scotoma size. Conclusions There is limited automatic adaptation of the oculomotor system following simulated central vision loss.
Simulation of age-related lens yellowing in younger observers has little effect on FM 100 hue error score. A variety of other factors such as pupil size, background illumination level, iris colour and macular pigment density may contribute to the age-related increase in FM 100 hue scores.
Infantile nystagmus (IN) describes a regular, repetitive movement of the eyes. A characteristic feature of each cycle of the IN eye movement waveform is a period in which the eyes are moving at minimal velocity. This so-called “foveation” period has long been considered the basis for the best vision in individuals with IN. In recent years, the technology for measuring eye movements has improved considerably, but there remains the challenge of calibrating the direction of gaze in tracking systems when the eyes are continuously moving. Identifying portions of the nystagmus waveform suitable for calibration typically involves time-consuming manual selection of the foveation periods from the eye trace. Without an accurate calibration, the exact parameters of the waveform cannot be determined. In this study, we present an automated method for segmenting IN waveforms with the purpose of determining the foveation positions to be used for calibration of an eye tracker. On average, the “point of regard” was found to be within 0.21° of that determined by hand-marking by an expert observer. This method enables rapid clinical quantification of waveforms and the possibility of gaze-contingent research paradigms being performed with this patient group.
Purpose: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two dimensions as a function of target direction, velocity, and amplitude. As a subsidiary experiment, we compared pursuit performance against that of fixation. Methods: Eye position was recorded from 15 observers during pursuit. The target was a 0.48 dot that moved across a large screen at 88/s or 168/s, either horizontally or vertically, through peak-to-peak amplitudes of 88, 168, or 328. Two-dimensional eye velocity was expressed relative to the target, and a bivariate probability density function computed to obtain accuracy and precision. As a comparison, identical metrics were derived from fixation data. Results: For all target directions, eye velocity was less precise along the target trajectory. Eye velocities orthogonal to the target trajectory were more accurate during vertical pursuit than horizontal. Pursuit accuracy and precision along and orthogonal to the target trajectory decreased at the higher target velocity. Accuracy along the target trajectory decreased with smaller target amplitudes. Conclusions: Orthogonal to the target trajectory, pursuit was inaccurate and imprecise. Compared to fixation, pursuit was less precise and less accurate even when following the stimulus that gave the best performance. Translational Relevance: This analytical approach may help the detection of subtle deficits in slow phase eye movements that could be used as biomarkers for disease progression and/or treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.