There has been considerable change in the practice of internal medicine in the past quarter century, including the rise of specialization, increasing time pressure, the hospitalist movement, and the rapidly changing responsibilities of internists in inpatient and outpatient settings. Training programs have not adequately responded to these trends, and there is a consensus that the residency education system urgently needs redesign.
Performance on the ITE can accurately predict and is highly correlated with performance on the ABIMCE. ITE results may therefore be useful in counseling residents about their educational needs in preparation for the ABIMCE.
These EPAs are intended to serve as a starting point or guide for program directors to begin developing meaningful, work-based assessments that inform the evaluation of residents' competence.
Red blood cells were loaded with 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (FBAPTA) by incubation with 50 microM of the acetoxymethyl ester (FBAPTA-AM), and cytosolic free Ca2+ was monitored with 19F-nuclear magnetic resonance (NMR). Loading with 50 microM FBAPTA-AM, which results in a final FBAPTA level of approximately 0.5 mM, caused only a 25-30% fall in cell ATP as measured by 31P-NMR when 5 mM pyruvate was present. Leakage of the NMR active Ca2+ indicator, which results from cell lysis, was corrected for with the addition of extracellular Eu3+ ions, extracellular ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA), or washing. With this method, we have found basal levels of cytosolic free Ca2+ averaging 61 +/- 6 nM (means +/- SE, n = 19). When the intracellular level of FBAPTA was varied from 0.1 to 1.0 mM, there was no correlation between the level of cytosolic free Ca2+ and the level of loading with FBAPTA. Addition of 10 microM of the Ca2+ ionophore A23187 with extracellular Ca2+ set at different levels by Ca2+-EGTA buffers caused an increase in cytosolic free Ca2+ as expected. Furthermore, ATP depletion caused a two- to three-fold increase in cytosolic free Ca2+, consistent with inhibition of Ca2+ efflux via that Ca2+-ATPase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.