EGFR overexpression and chromosome 3p deletion are two frequent events in head and neck cancers. We previously mapped the smallest region of recurrent copy-number loss at 3p12.2-p14.1. LRIG1, a negative regulator of EGFR, was found at 3p14, and its copy-number loss correlated with poor clinical outcome. Inducible expression of LRIG1 in head and neck cancer TW01 cells, a line with low LRIG1 levels, suppressed cell proliferation in vitro and tumor growth in vivo. Gene expression profiling, quantitative RT-PCR, chromatin immunoprecipitation, and western blot analysis demonstrated that LRIG1 modulated extracellular matrix (ECM) remodeling and EGFR-MAPK-SPHK1 transduction pathway by suppressing expression of EGFR ligands/activators, MMPs and SPHK1. In addition, LRIG1 induction triggered cell morphology changes and integrin inactivation, which coupled with reduced SNAI2 expression. By contrast, knockdown of endogenous LRIG1 in TW06 cells, a line with normal LRIG1 levels, significantly enhanced cell proliferation, migration and invasiveness. Such tumor-promoting effects could be abolished by specific MAPK or SPHK1 inhibitors. Our data suggest LRIG1 as a tumor suppressor for head and neck cancers; LRIG1 downregulation in cancer cells enhances EGFR-MAPK-SPHK1 signaling and ECM remodeling activity, leading to malignant phenotypes of head and neck cancers.
The linewidth in intersubband transitions can be significantly reduced below the sum of the lifetime broadening for the involved states, if the scattering environment is similar for both states. This is studied within a nonequilibrium Green function approach here. We find that the effect is of particular relevance for a recent, relatively low doped, THz quantum-cascade laser.
Factors regulating the differentiation of sheep subcutaneous and abdominal (omental or perirenal) preadipocytes from foetal lambs, suckling lambs and fattening sheep have been investigated using a serum-free cell culture system. Differentiation was assessed by changes in the activity of the enzyme glycerol 3-phosphate dehydrogenase. Insulin or IGF-I was essential for differentiation. Dexamethasone, a lipid supplement (Excyte) and the thiazolidinedione, rosiglitazone (BRL 49653) (a peroxisome proliferator-activated receptor-(PPAR-) agonist) all enhanced preadipocyte differentiation, whereas fibroblast growth factor and GH were inhibitory. The most effective combination was insulin, triiodothyronine, dexamethasone and rosiglitazone. Under suboptimal conditions, preadipocytes from fattening sheep differentiated less well than cells from suckling and foetal lambs. Also, under suboptimal conditions, abdominal preadipocytes did not differentiate as well as subcutaneous preadipocytes. However, age and depot differences were minimised when cells were cultured with insulin, triiodothyronine, rosiglitazone and either dexamethasone or lipid. The results suggest that variation in the ability to produce the natural ligand for PPAR-contributes to depot-and age-specific differences in the ability of preadipocytes to differentiate.
The electronic structure and magnetic properties of the full-Heusler alloys Co2TiX (X element from groups III, IV and V) were studied by first principle calculations. Previous calculations found Co2TiAl and Co2TiSn not to be half metallic. In this paper, however, it will be shown that the alloys with X=Al,Si,Ge,Sn are half metallic and ferromagnetic. The effect of atomic disorder in the Ti–Al sublattices reduces the half metallicity of the Co2TiAl Heusler alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.