The coronavirus SARS-CoV-2 of 2019 (COVID-19) causes a pandemic that has been diagnosed in more than 70 million people worldwide. Mild-to-moderate COVID-19 symptoms include coughing, fever, myalgia, shortness of breath, and acute inflammatory lung injury (ALI). In contrast, acute respiratory distress syndrome (ARDS) and respiratory failure occur in patients diagnosed with severe COVID-19. ARDS is mediated, at least in part, by a dysregulated inflammatory response due to excessive levels of circulating cytokines, a condition known as the "cytokine-storm syndrome." Currently, there are FDA-approved therapies that attenuate the dysregulated inflammation that occurs in COVID-19 patients, such as dexamethasone or other corticosteroids and IL-6 inhibitors, including sarilumab, tocilizumab, and siltuximab. However, the efficacy of these treatments have been shown to be inconsistent. Compounds that activate the vagus nerve-mediated cholinergic anti-inflammatory reflex, such as the a7 nicotinic acetylcholine receptor agonist, GTS-21, attenuate ARDS/inflammatory lung injury by decreasing the extracellular levels of high mobility group box-1 (HMGB1) in the airways and the circulation. It is possible that HMGB1 may be an important mediator of the "cytokine-storm syndrome." Notably, high plasma levels of HMGB1 have been reported in patients diagnosed with severe COVID-19, and there is a significant negative correlation between HMGB1 plasma levels and clinical outcomes. Nicotine can activate the cholinergic anti-inflammatory reflex, which attenuates the up-regulation and the excessive release of pro-inflammatory cytokines/ chemokines. Therefore, we hypothesize that low molecular weight compounds that activate the cholinergic anti-inflammatory reflex, such as nicotine or GTS-21, may represent a potential therapeutic approach to attenuate the dysregulated inflammatory responses in patients with severe COVID-19.
Background
High mobility group box 1 protein (HMGB1) is an alarmin following its release by immune cells upon cellular activation or stress. High levels of extracellular HMGB1 play a critical role in impairing the clearance of invading pulmonary pathogens and dying neutrophils in the injured lungs of cystic fibrosis (CF) and acute respiratory distress syndrome (ARDS). A heparin derivative, 2-O, 3-O desulfated heparin (ODSH), has been shown to inhibit HMGB1 release from a macrophage cell line and is efficacious in increasing bacterial clearance in a mouse model of pneumonia. Thus, we hypothesized that ODSH can attenuate the bacterial burden and inflammatory lung injury in CF and we conducted experiments to determine the underlying mechanisms.
Methods
We determined the effects of ODSH on lung injury produced by Pseudomonas aeruginosa (PA) infection in CF mice with the transmembrane conductance regulator gene knockout (CFTR−/−). Mice were given ODSH or normal saline intraperitoneally, followed by the determination of the bacterial load and lung injury in the airways and lung tissues. ODSH binding to HMGB1 was determined using surface plasmon resonance and in silico docking analysis of the interaction of the pentasaccharide form of ODSH with HMGB1.
Results
CF mice given 25 mg/kg i.p. of ODSH had significantly lower PA-induced lung injury compared to mice given vehicle alone. The CF mice infected with PA had decreased levels of nitric oxide (NO), increased levels of airway HMGB1 and HMGB1-impaired macrophage phagocytic function. ODSH partially attenuated the PA-induced alteration in the levels of NO and airway HMGB1 in CF mice. In addition, ODSH reversed HMGB1-impaired macrophage phagocytic function. These effects of ODSH subsequently decreased the bacterial burden in the CF lungs. In a surface plasmon resonance assay, ODSH interacted with HMGB1 with high affinity (KD = 3.89 × 10–8 M) and induced conformational changes that may decrease HMGB1’s binding to its membrane receptors, thus attenuating HMGB1-induced macrophage dysfunction.
Conclusions
The results suggest that ODSH can significantly decrease bacterial infection-induced lung injury in CF mice by decreasing both HMGB1-mediated impairment of macrophage function and the interaction of HMGB1 with membrane receptors. Thus, ODSH could represent a novel approach for treating CF and ARDS patients that have HMGB1-mediated lung injury.
Graphic abstract
Mucoid exopolysaccharide isolated from Pseudomonas aeruginosa obtained from colonized cystic fibrosis patients was found to be a potent mitogen for mouse lymphocytes. The responding lymphocyte was a B cell, and we found no evidence that T cell could proliferate or synergize with B cells in response to the mucoid exopolysaccharide. Proliferation was not inhibitable by polymyxin B, which blocks lipopolysaccharide (LPS)-induced proliferation, indicating that a minor LPS contaminant in the purified exopolysaccharide was not the mitogenic component. Mucoid exopolysaccharide induced secretion of IgG, suggesting that it is polyclonal mitogen. It also induced splenic adherent cells (macrophages) to produce interleukin 1. We propose that mucoid exopolysaccharide produced by P. aeruginosa present in the lungs of cystic fibrosis patients may have potent in vivo consequences resulting in aberrant immunoregulation and inhibition of effective immune elimination of P. aeruginosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.