It is now well established from a variety of studies that there is a significant benefit from combining video and audio data in detecting active speakers. However, either of the modalities can potentially mislead audiovisual fusion by inducing unreliable or deceptive information. This paper outlines active speaker detection as a multi-objective learning problem to leverage best of each modalities using a novel self-attention, uncertaintybased multimodal fusion scheme. Results obtained show that the proposed multi-objective learning architecture outperforms traditional approaches in improving both mAP and AUC scores. We further demonstrate that our fusion strategy surpasses, in active speaker detection, other modality fusion methods reported in various disciplines. We finally show that the proposed method significantly improves the state-of-the-art on the AVA-ActiveSpeaker dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.