Background: Reduced cerebrospinal fluid (CSF) concentration of amyloid-β1-42 (Aβ1-42) reflects the presence of amyloidopathy in brains of subjects with Alzheimer’s disease (AD).Objective: To qualify the use of Aβ1-42/Aβ1-40 for improvement of standard operating procedures (SOP) for measurement of CSF Aβ with a focus on CSF collection, storage, and analysis.Methods: Euroimmun ELISAs for CSF Aβ isoforms were used to set up a SOP with respect to recipient properties (low binding, polypropylene), volume of tubes, freeze/thaw cycles, addition of detergents (Triton X-100, Tween-20) in collection or storage tubes or during CSF analysis. Data were analyzed with linear repeated measures and mixed effects models.Results: Optimization of CSF analysis included a pre-wash of recipients (e.g., tubes, 96-well plates) before sample analysis. Using the Aβ1-42/Aβ1-40 ratio, in contrast to Aβ1-42, eliminated effects of tube type, additional freeze/thaw cycles, or effect of CSF volumes for polypropylene storage tubes. ‘Low binding’ tubes reduced the loss of Aβ when aliquoting CSF or in function of additional freeze/thaw cycles. Addition of detergent in CSF collection tubes resulted in an almost complete absence of variation in function of collection procedures, but affected the concentration of Aβ isoforms in the immunoassay.Conclusion: The ratio of Aβ1-42/Aβ1-40 is a more robust biomarker than Aβ1-42 toward (pre-) analytical interfering factors. Further, ‘low binding’ recipients and addition of detergent in collection tubes are able to remove effects of SOP-related confounding factors. Integration of the Aβ1-42/Aβ1-40 ratio and ‘low-binding tubes’ into guidance criteria may speed up worldwide standardization of CSF biomarker analysis.
High levels of total α-synuclein (t-α-synuclein) in the cerebrospinal fluid (CSF) were reported in sporadic Creutzfeldt-Jakob disease (sCJD). The potential use of t-α-synuclein in the discrimination of Lewy body dementias (i.e., Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB)) is still under investigation. In addition, phospho-serine-129 α-synuclein (p-α-synuclein) has been described to be slightly increased in the CSF of synucleinopathies. Here, we analyzed t-α-synuclein and p-α-synuclein concentrations and their ratio in the context of differential diagnosis of neurodegenerative diseases. We quantified the levels of CSF t-α-synuclein and p-α-synuclein in a cohort of samples composed of neurological controls (NC), sCJD, PDD, and DLB by means of newly developed specific enzyme-linked immunosorbent assays. T-α-synuclein and p-α-synuclein were specifically elevated in sCJD compared to other disease groups. The area under the curve (AUC) values for t-α-synuclein were higher for the discrimination of sCJD from dementias associated to Lewy bodies as compared to the use of p-α-synuclein. A combination of both markers even increased the diagnostic accuracy. An inverse correlation was observed in CSF between t-α-synuclein and p-α-synuclein, especially in the DLB group, indicating a disease-relevant association between both markers. In conclusion, our data confirm t-α-synuclein and p-α-synuclein as robust biomarkers for sCJD and indicate the potential use of colorimetric t-α-synuclein ELISAs for differential diagnosis of dementia types.
BackgroundThe pathophysiology of neurodegeneration is complex. Its diagnosis requires an early identification of sequential changes in several hallmarks in the brains of affected subjects. The presence of brain pathology can be visualized in the cerebrospinal fluid (CSF) by protein profiling. It is clear that the field of Alzheimer’s disease (AD) will benefit from an integration of algorithms including CSF concentrations of individual proteins, especially as an aid in clinical decision-making or to improve patient enrolment in clinical trials. The protein profiling approach requires standard operating procedures for collection and storage of CSF which must be easy to integrate into a routine clinical lab environment. Our study provides recommendations for analysis of neurogranin trunc P75, α-synuclein, and tau, in combination with the ratio of β-amyloid Aβ(1–42)/Aβ(1–40).MethodsProtocols for CSF collection were compared with CSF derived from subjects with normal pressure hydrocephalus (n = 19). Variables included recipient type (collection, storage), tube volume, and addition of detergents at the time of collection. CSF biomarker analysis was performed with enzyme-linked immunosorbent assays (ELISAs). Data were analyzed with linear repeated measures and mixed effects models.ResultsAdsorption to recipients is lower for neurogranin trunc P75, α-synuclein, and tau (<10%), as compared to Aβ(1–42). For neurogranin trunc P75 and total tau, there is still an effect on analyte concentrations as a function of the tube volume. Protocol-related differences for Aβ(1–42) can be normalized at the (pre-)analytical level using the ratio Aβ(1–42)/Aβ(1–40), but not by using the ratio Aβ(1–42)/tau. The addition of detergent at the time of collection eliminates differences due to adsorption.ConclusionsOur study recommends the use of low protein binding tubes for quantification in CSF (without additives) of all relevant CSF biomarkers. Pre-analytical factors have less effect on α-synuclein, neurogranin trunc P75, and total tau, as compared to Aβ(1–42). The ratio of Aβ(1–42)/Aβ(1–40), but not Aβ(1–42)/tau, can be used to adjust for pre-analytical differences in analyte concentrations. Our study does not recommend the inclusion of detergents at the time of collection of CSF. The present results provide an experimental basis for new recommendations for parallel analysis of several proteins using one protocol for collection and storage of CSF.Electronic supplementary materialThe online version of this article (doi:10.1186/s13195-017-0265-7) contains supplementary material, which is available to authorized users.
The lack of (inter-)laboratory standardization has hampered the application of universal cutoff values for Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers and their transfer to general clinical practice. The automation of the AD biomarker immunoassays is suggested to generate more robust results than using manual testing. Open-access platforms will facilitate the integration of automation for novel biomarkers, allowing the introduction of the protein profiling concept. A feasibility study was performed on an automated open-access platform of the commercial immunoassays for the 42-amino-acid isoform of amyloid-β (Aβ), Aβ, and total tau in CSF. Automated Aβ, Aβ, and tau immunoassays were performed within predefined acceptance criteria for bias and imprecision. Similar accuracy was obtained for ready-to-use calibrators as for reconstituted lyophilized kit calibrators. When compared with the addition of a standard curve in each test run, the use of a master calibrator curve, determined before and applied to each batch analysis as the standard curve, yielded an acceptable overall bias of -2.6% and -0.9% for Aβ and Aβ, respectively, with an imprecision profile of 6.2% and 8.4%, respectively. Our findings show that transfer of commercial manual immunoassays to fully automated open-access platforms is feasible, as it performs according to universal acceptance criteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.