In this paper, we proposed a nonlinear deterministic mathematical model for the transmission dynamics of COVID-19. First, we analyzed the system properties such as boundedness of the solutions, existence of disease-free and endemic equilibria, local and global stability of equilibrium points. Besides, we computed the basic reproduction number
and studied its normalized sensitivity for model parameters to identify the most influencing parameter. The local stability of the disease-free equilibrium point is also verified via the help of the Jacobian matrix and Routh Hurwitz criteria. Moreover, the global stability of the disease-free equilibrium point is proved by using the approach of Castillo-Chavez and Song. We also proved the existence of the forward bifurcation using the center manifold theory. Then the model is fitted with COVID-19 infected cases reported from March 13, 2020, to July 31, 2021, in Ethiopia. The values of model parameters are then estimated from the data reported using the least square method together with the
fminsearch
function in the
MATLAB
optimization toolbox. Finally, different simulation cases were performed using PYTHON software to compare with analytical results. The simulation results suggest that the spread of COVID-19 can be managed via minimizing the contact rate of infected and increasing the quarantine of exposed individuals.
In this paper, we apply optimal control theory to a novel coronavirus transmission model given by a system of non-linear ordinary differential equations. Optimal control strategies are obtained by minimizing the number of exposed and infected population considering the cost of implementation. The existence of optimal controls and characterization is established using Pontryagin's Maximum Principle. An expression for the basic reproduction number is derived in terms of control variables. Then the sensitivity of basic reproduction number with respect to model parameters is also analysed. Numerical simulation results demonstrated good agreement with our analytical results. Finally, the findings of this study shows that comprehensive impacts of prevention, intensive medical care and surface disinfection strategies outperform in reducing the disease epidemic with optimum implementation cost.
Tuberculosis (TB) and coronavirus (COVID-19) are both infectious diseases that globally continue affecting millions of people every year. They have similar symptoms such as cough, fever, and difficulty breathing but differ in incubation periods. This paper introduces a mathematical model for the transmission dynamics of TB and COVID-19 coinfection using a system of nonlinear ordinary differential equations. The well-posedness of the proposed coinfection model is then analytically studied by showing properties such as the existence, boundedness, and positivity of the solutions. The stability analysis of the equilibrium points of submodels is also discussed separately after computing the basic reproduction numbers. In each case, the disease-free equilibrium points of the submodels are proved to be both locally and globally stable if the reproduction numbers are less than unity. Besides, the coinfection disease-free equilibrium point is proved to be conditionally stable. The sensitivity and bifurcation analysis are also studied. Different simulation cases were performed to supplement the analytical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.