Mathematical modeling is crucial to investigating tthe ongoing coronavirus disease 2019 (COVID-19) pandemic. The primary target area of the SARS-CoV-2 virus is epithelial cells in the human lower respiratory tract. During this viral infection, infected cells can activate innate and adaptive immune responses to viral infection. Immune response in COVID-19 infection can lead to longer recovery time and more severe secondary complications. We formulate a micro-level mathematical model by incorporating a saturation term for SARS-CoV-2-infected epithelial cell loss reliant on infected cell levels. Forward and backward bifurcation between disease-free and endemic equilibrium points have been analyzed. Global stability of both disease-free and endemic equilibrium is provided. We have seen that the disease-free equilibrium is globally stable for R0<1, and endemic equilibrium exists and is globally stable for R0>1. Impulsive application of drug dosing has been applied for the treatment of COVID-19 patients. Additionally, the dynamics of the impulsive system are discussed when a patient takes drug holidays. Numerical simulations support the analytical findings and the dynamical regimes in the systems.
Malaria is a serious illness caused by a parasite, called Plasmodium, transmitted to humans through the bites of female Anopheles mosquitoes. The parasite infects and destroys the red blood cells in the human body leading to symptoms, such as fever, headache, and flu-like illness. Awareness campaigns that educate people about malaria prevention and control reduce transmission of the disease. In this research, a mathematical model is proposed to study the impact of awareness-based control measures on the transmission dynamics of malaria. Some basic properties of the proposed model, such as non-negativity and boundedness of the solutions, the existence of the equilibrium points, and their stability properties, have been studied using qualitative theory. Disease-free equilibrium is globally asymptotic when the basic reproduction number, R0, is less than the number of current cases. Finally, optimal control theory is applied to minimize the cost of disease control and solve the optimal control problem by applying Pontryagin’s minimum principle. Numerical simulations have been provided for the confirmation of the analytical results. Endemic equilibrium exists for R0>1, and a forward transcritical bifurcation occurs at R0=1. The optimal profiles of the treatment process, organizing awareness campaigns, and insecticide uses are obtained for the cost-effectiveness of malaria management. This research concludes that awareness campaigns through social media with an optimal control approach are best for cost-effective malaria management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.