To address the scale variance and uneven distribution of objects in scenarios of object-counting tasks, an algorithm called Refinement Network (RefNet) is exploited. The proposed top-down scheme sequentially aggregates multiscale features, which are laterally connected with low-level information. Trained by a multiresolution density regression loss, a set of intermediate-density maps are estimated on each scale in a multiscale feature pyramid, and the detailed information of the density map is gradually added through coarse-to-fine granular refinement progress to predict the final density map. We evaluate our RefNet on three crowd-counting benchmark datasets, namely, ShanghaiTech, UCF CC 50, and UCSD, and our method achieves competitive performances on the mean absolute error and root mean squared error compared to the state-of-the-art approaches. We further extend our RefNet to cell counting, illustrating its effectiveness on relative counting tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.