The separation of photogenerated carriers and photocatalytic hydrogen production efficiency was greatly enhanced by the 2D/2D heterojunction of Ti3C2/g-C3N4.
Although hexagonal boron nitride (h‐BN) has recently been identified as a highly efficient catalyst for the oxidative dehydrogenation of propane (ODHP) reaction, the reaction mechanisms, especially regarding radical chemistry of this system, remain elusive. Now, the first direct experimental evidence of gas‐phase methyl radicals (CH3.) in the ODHP reaction over boron‐based catalysts is achieved by using online synchrotron vacuum ultraviolet photoionization mass spectroscopy (SVUV‐PIMS), which uncovers the existence of gas‐phase radical pathways. Combined with density functional theory (DFT) calculations, the results demonstrate that propene is mainly generated on the catalyst surface from the C−H activation of propane, while C2 and C1 products can be formed via both surface‐mediated and gas‐phase pathways. These observations provide new insights towards understanding the ODHP reaction mechanisms over boron‐based catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.