In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interphase (SEI) layer with a metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of LiOH and LiCl precursors at a mild processing temperature <400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures <400 °C, standing in great contrast to current processing temperatures of >1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solid electrolytes, where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. To understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.
All-solid-state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low-cost, and large-scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all-solid-state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low-cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide-based solid electrolytes. Design of the solid electrolyte Na3 SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm(-1) at 25 °C and ideal compatibility with a metallic sodium anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.