Hydrogen generation from the direct splitting of water by photocatalysis is regarded as a promising and renewable solution for the energy crisis. The key to realize this reaction is to find an efficient and robust photocatalyst that ideally makes use of the energy from sunlight. Recently, due to the attractive properties such as appropriate band structure, ultrahigh specific surface area, and more exposed active sites, two-dimensional (2D) photocatalysts have attracted significant attention for photocatalytic water splitting. This Review attempts to summarize recent progress in the fabrication and applications of 2D photocatalysts including graphene-based photocatalysts, 2D oxides, 2D chalcogenides, 2D carbon nitride, and some other emerging 2D materials for water splitting. The construction strategies and characterization techniques for 2D/2D photocatalysts are summarized. Particular attention has been paid to the role of 2D/2D interfaces in these 2D photocatalysts as the interfaces and heterojunctions are critical for facilitating charge separation and improving photocatalysis efficiency. We also critically discuss their stability as photocatalysts for water splitting. Finally, we highlight the ongoing challenges and opportunities for the future development of 2D photocatalysts in this exciting and still emerging area of research.
The separation of photogenerated carriers and photocatalytic hydrogen production efficiency was greatly enhanced by the 2D/2D heterojunction of Ti3C2/g-C3N4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.