Abstract:In this report, the β-CD(AN-co-AA) hydrogel was used to remove the thorium(IV) [Th(IV)] from the water system, and the new adsorbent was characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The influences of contact time, pH value, ionic strength, solid-liquid ratio, initial Th(IV) concentration, and temperature on Th(IV) adsorption onto the functional hydrogel were researched. The results showed that the experimental data followed the Langmuir isotherm and the maximum adsorption capacity (q max ) for Th(IV) was 692 mg/g at pH 2.95, which approached the calculated (q e ) 682 mg/g. The desorption capacity of Th(IV) in different HNO 3 concentrations ranging from 0.005 to 0.5 M was also studied, and the percentage of the maximum desorption was 86.85% in the condition of 0.09 M HNO 3 . The selectivity of β-CD(AN-co-AA) hydrogel was also be studied, the results indicated that this material retained the good adsorption capacity to Th(IV) even when the Ca 2+ , Mg 2+ , or Pb 2+ existed in the system. The findings indicate that β-CD(AN-co-AA) can be used as a new candidate for the enrichment and separation of Th(IV), or its analogue actinides, from large-volume solution in practical application.
The β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AN)) synthesized through radical polymerization reactions of β-cyclodextrin (β-CD) with maleic anhydride (MAH) and acrylonitrule (AN) in the special monomer proportion, chemically modify with amidoxime groups to obtained the new adsorbent, which was terms as amidoxime-functionalized β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AO)). Based on the characteristic results of Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), X-ray Diffraction (XRD), and thermalgravity analysis (TGA) techniques, the grafted nitrile groups were successfully converted to amidoxime groups by reaction with hydroxylamine. In this report, the influence of different factors such as pH value and ionic strength, solid-liquid ratio, contact time, initial U(VI) concentration, and temperature on adsorption was investigated by a batch adsorption experiment. The adsorption process fitting results show that the adsorption followed the Langmuir isotherm model and the maximum adsorption capacity was 0.747 g/g at pH 4.0. In addition, the regeneration performance was investigated by varying the concentration of eluent, temperature, and contact time. Under the desorption condition of 0.10 M HNO3, the adsorbents can be reused 12 times in the case that the adsorption capacity was not significantly reduced. The functionalized copolymer exhibits high selectivity under circumstance of other co-existing ions is present in the solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.