Pigeons (Columba livia) have excellent flying and orienting abilities and are ideal study subjects for biologists who research the underlying neurological mechanisms that modulate flying and allow birds to find their way home. These mechanisms also attract the engineers who want to apply pigeon locomotion to the design of flying robots. Here, we identified the motor-related brain nuclei and revealed their relationship in spatial distribution in pigeons under light anesthesia and freely moving conditions respectively. Flapping and lateral body movements were successfully elicited when electrical microstimulation was applied to the diencephalon, medial part of the midbrain, and medulla oblongata of lightly anesthetized pigeons (N = 28) whose heads were fixed. The current thresholds for stimulating different nuclei and behavior ranged from 10 μA to 20 μA. During freely moving tests (N = 24), taking off and turning were induced by a wireless stimulator through microelectrodes implanted in specific nuclei or brain regions. The results showed that electrical stimulation of these nuclei elicited the desired motor behavior. In addition, regulatory mechanisms were identified in the motor-related regions and nuclei of pigeons. Overlapping in the behavior elicited by stimulation of different regions indicates that complicated neural networks regulate motor behavior. Therefore, more studies need to be conducted involving simultaneous stimulation at multiple points within the nuclei involved in the networks.
AimTo explore the chronic effects of metformin on testosterone levels in men with type 2 diabetes mellitus (T2DM).MethodsThis is a secondary analysis of a real-world study evaluating the efficacy and safety of premixed insulin treatment in patients with T2DM via 3-month intermittent flash glucose monitoring. Male patients aged 18-60 who were using metformin during the 3-month study period were included as the metformin group. The control group included males without metformin therapy by propensity score matching analysis with age as a covariate. Testosterone levels were measured at baseline and after 3-month treatment.ResultsAfter 3-month treatment, the control group had higher levels of total testosterone, free and bioavailable testosterone than those at baseline (P<0.05). Compared with the control group, the change of total (-0.82 ± 0.59 vs. 0.99 ± 0.59 nmol/L) and bioavailable (-0.13 ± 0.16 vs. 0.36 ± 0.16 nmol/L) testosterone levels in the metformin group significantly decreased (P=0.036 and 0.029, respectively). In Glycated Albumin (GA) improved subgroup, the TT, FT, and Bio-T levels in the control subgroup were higher than their baseline levels (P < 0.05). Compared with the metformin subgroup, TT level in the control subgroup also increased significantly (P=0.044). In GA unimproved subgroup, the change of TT level in the metformin subgroup was significantly lower than that in the control subgroup (P=0.040).ConclusionIn men with T2DM, 3-month metformin therapy can reduce testosterone levels, and counteract the testosterone elevation that accompanied with the improvement of blood glucose.Clinical Trial Registrationhttps://www.clinicaltrials.gov/ct2/show/NCT04847219?term=04847219&draw=2&rank=1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.