Itch is a common symptom in patients with skin and systemic diseases, but the effective treatment is limited. Here, we evaluated the anti-itch effects of the botulinum toxin type A (BoNT/A) using acute and chronic dry skin itch mouse models, which were induced by compound 48/80, chloroquine, and a mixture of acetone-diethylether-water treatment, respectively. Pretreatment of intradermal BoNT/A exerted long-term inhibitory effects on compound 48/80-induced and chloroquine-induced acute itch on days 1, 3, 7, and 14, but not on day 21, in mice. Furthermore, a single injection of BoNT/A reduced the expression of the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), and the transient receptor potential cation channel, subfamily A, member 1 (TRPA1) at both transcriptional and translational levels in the dorsal root ganglia (DRG) in mice. Pretreatment of BoNT/A also attenuated chronic itch induced by acetone-diethylether-water treatment and abolished the upregulation of TRPA1 in the DRG. Thus, it was suggested that downregulation of the expression of TRPA1 and TRPV1 in the DRG may contribute toward the long-term anti-itch effects of a single injection of BoNT/A in mice and BoNT/A treatment may serve as an alternative strategy for anti-itch therapy.
In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain.
Chronic stress is widely considered to trigger or enhance itch, especially for pruritic dermatitis. However, the molecular mechanisms linking chronic stress and itch are still unknown. The present study aimed to elucidate the role of adrenergic signaling in itch hypersensitivity following heterotypic chronic intermittent stress (HIS) in rats. HIS significantly increased hindlimb scratching, but not forepaw swiping, induced by intradermal injection of 5-hydroxytryptamine (5-HT) in the rat cheek. Coadministration of stress mediators such as norepinephrine or epinephrine dose-dependently increased both 5-HT-induced hindlimb scratching and 5-HT-induced forepaw swiping. HIS-induced itch hypersensitivity was attenuated by blockade of sympathetic signaling through guanethidine treatment, and systemic administration of the β-adrenoceptor antagonist propranolol and the β2-adrenoceptor antagonist butoxamine, but not on treatment with an α-adrenoceptor antagonist phentolamine and a β1-adrenoceptor antagonist atenolol. Moreover, HIS selectively increased the expression of β2-adrenoceptors and proinflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nerve growth factor (NGF)] in rat skin. The β-blockers propranolol and butoxamine abolished the upregulation of proinflammatory factors. The β2-adrenoceptor agonist terbutaline was sufficient to enhance the skin expression of TNF-α and IL-1β and to increase 5-HT-induced scratching in naive rats. Pretreatment with TNF-α could increase 5-HT-induced scratching. Together, these results demonstrate that β2-adrenoceptors mediate itch hypersensitivity following chronic stress by inducing proinflammatory factors, such as TNF-α, in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.