Two novel monovinyl β‐cyclodextrin (β‐CD) monomers are synthesized. Their chemical compositions are characterized by means of element analysis, NMR and FT‐IR spectroscopy. The results show that the synthesis techniques used are convenient and efficient. Using N‐isopropylacrylamide as a comonomer, two novel linear copolymers can also be synthesized.Synthesis route of monovinyl β‐CD monomers.magnified imageSynthesis route of monovinyl β‐CD monomers.
Dietary zinc oxide (ZnO) at pharmacological level has been widely used to prevent and treat diarrhea in weaning piglets. Despite its importance for promoting animal health and performance, the influence of microbiome profiles in intestinal tracts by ZnO needs to be comprehensively investigated. In this study, we conducted a comparative microbial community analysis in the ileum and colon of piglets fed by either control diet, high ZnO (3,000 mg/kg) supplement or antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) supplement. Our results showed that both high dietary ZnO and in-feed antibiotics supplementations significantly increased 5 phyla of Spirochaetes, Tenericutes, Euryarchaeota, Verrucomicrobia, TM7, and reduced 1 phyla of Chlamydiae in ileal digesta. The relative abundance of opportunistic pathogens Campylobacterales were decreased while Enterobacteriales were increased in ZnO or antibiotics-supplemented group when compared to the control. In the colon, the phyla Euryarchaeota, the genus Methanobrevibacter, and the species Methanobrevibacter smithii were drastically increased by high dietary ZnO supplementation when compared with other groups. The microbial functional prediction analysis showed that high dietary ZnO and in-feed antibiotics had a higher abundance of transporter pathway enrichment in the ileum when compared with the control. While in the colon high dietary ZnO had a higher abundant enrichment of methane metabolism involving energy supply when compared with other groups. Both high dietary ZnO and antibiotics increased the microbiota diversity of ileal digesta while they decreased the microbiota diversity of the colonic digesta. Collectively, these results suggested that dietary ZnO and in-feed antibiotics supplementations presented similar effect on ileal microbiota, and mainly affected the non-predominant microbiota.
Catfish is one of the major aquaculture species in the United States. However, the catfish industry is threatened by several bacterial diseases such as enteric septicemia of catfish (ESC), columnaris disease and Aeromonas disease, as well as by abiotic stresses such as high temperature and low oxygen. Research has been conducted for several decades to understand the host responses to these diseases and abiotic stresses. With the development of sequencing technologies, and the application of genome-wide association studies in aquaculture species, significant progress has been made. This review article summarizes recent progress in understanding the molecular responses of catfish after bacterial infection and stress challenges, and in understanding of genomic and genetic basis for disease resistance and stress tolerance.
Background
Jellyfish belong to the phylum Cnidaria, which occupies an important phylogenetic location in the early-branching Metazoa lineages. The jellyfish Rhopilema esculentum is an important fishery resource in China. However, the genome resource of R. esculentum has not been reported to date.
Findings
In this study, we constructed a chromosome-level genome assembly of R. esculentum using Pacific Biosciences, Illumina, and Hi-C sequencing technologies. The final genome assembly was ∼275.42 Mb, with a contig N50 length of 1.13 Mb. Using Hi-C technology to identify the contacts among contigs, 260.17 Mb (94.46%) of the assembled genome were anchored onto 21 pseudochromosomes with a scaffold N50 of 12.97 Mb. We identified 17,219 protein-coding genes, with an average CDS length of 1,575 bp. The genome-wide phylogenetic analysis indicated that R. esculentum might have evolved more slowly than the other scyphozoan species used in this study. In addition, 127 toxin-like genes were identified, and 1 toxin-related “hub” was found by a genomic survey.
Conclusions
We have generated a chromosome-level genome assembly of R. esculentum that could provide a valuable genomic background for studying the biology and pharmacology of jellyfish, as well as the evolutionary history of Cnidaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.