Many transfection techniques can deliver biomolecules into cells, but the dose cannot be controlled precisely. Delivering well-defined amounts of materials into cells is important for various biological studies and therapeutic applications. Here, we show that nanochannel electroporation can deliver precise amounts of a variety of transfection agents into living cells. The device consists of two microchannels connected by a nanochannel. The cell to be transfected is positioned in one microchannel using optical tweezers, and the transfection agent is located in the second microchannel. Delivering a voltage pulse between the microchannels produces an intense electric field over a very small area on the cell membrane, allowing a precise amount of transfection agent to be electrophoretically driven through the nanochannel, the cell membrane and into the cell cytoplasm, without affecting cell viability. Dose control is achieved by adjusting the duration and number of pulses. The nanochannel electroporation device is expected to have high-throughput delivery applications.
Cleanup of oil spills is a worldwide challenge to prevent serious environmental pollution. A new kind of poly(dimethylsiloxane) (PDMS) oil absorbent with high absorption capacity and excellent reusability was prepared and used for oil/water separation. The preparation process of PDMS oil absorbents involves direct curing of a PDMS prepolymer in a p-xylene solution in the presence of commercial sugar particles, which is simple and economic. PDMS oil absorbents have interconnected pores and a swellable skeleton, combining the advantages of porous materials and gels. Absorption capacities of PDMS oil absorbents are 4-34 g/g for various oils and organic solvents, which are 3 times that reported previously. Owing to their hydrophobicity and oleophilicity, the as-obtained PDMS oil absorbents can selectively collect oils or organic solvents from water. The absorption process can be finished within tens of seconds. Furthermore, the absorbed oils or organic solvents can be recovered by compressing the oil absorbents, and after 20 absorbing/recovering cycles, PDMS oil absorbents show little loss of their absorption capacities and own weights.
Liquid interfacial plasmonic platform is emerging for new sensors, catalysis, and tunable optical devices, but also promises an alternative for practical applications of surface-enhanced Raman spectroscopy (SERS). Here we show that vigorous mixing of chloroform with citrate-capped gold nanorod sols triggers the rapid self-assembly of three-dimensional plasmonic arrays at the chloroform/water (O/W) interface and produces a self-healing metal liquid-like brilliant golden droplet. The O phase itself generates stable SERS fingerprints and is a good homogeneous internal standard for quantitative analysis. This platform presents reversible O/W encasing in a common cuvette determined just by surface wettability of the container. Both O-in-W and W-in-O platforms exhibit excellent SERS sensitivity and reproducibility for different analytes by the use of a portable Raman device. It paves the way toward a practical and quantitative liquid-state SERS analyzer, likened to a simple UV–Vis spectrometer, that is far superior to typical solid substrate-based or nanoparticle sol-based analysis.
Electroporation has been one of the most popular non-viral technologies for cell transfection. However, conventional bulk electroporation (BEP) shows significant limitations in efficiency, cell viability and transfection uniformity. Recent advances in microscale-electroporation (MEP) resulted in improved cell viability. Further miniaturization of the electroporation system (i.e., nanoscale) has brought up many unique advantages, including negligible cell damage and dosage control capabilities with single-cell resolution, which has enabled more translational applications. In this review, we give an insight into the fundamental and technical aspects of micro- and nanoscale/nanochannel electroporation (NEP) and go over several examples of MEP/NEP-based cutting-edge research, including gene editing, adoptive immunotherapy, and cellular reprogramming. The challenges and opportunities of advanced electroporation technologies are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.