Intensive instruction in BSE did not reduce mortality from breast cancer. Programs to encourage BSE in the absence of mammography would be unlikely to reduce mortality from breast cancer. Women who choose to practice BSE should be informed that its efficacy is unproven and that it may increase their chances of having a benign breast biopsy.
BackgroundMETTL3 is an RNA methyltransferase that mediates m6A modification and is implicated in mRNA biogenesis, decay, and translation. However, the biomechanism through which METTL3 regulates MALAT1-miR-1914-3p-YAP axis activity to induce NSCLC drug resistance and metastasis is not very clear.MethodsThe expression of mRNA was analyzed by qPCR assays. Protein levels were analyzed by western blotting and immunofluorescent staining. Cellular proliferation was detected by CCK8 assays. Cell migration and invasion were analyzed by wound healing and transwell assays, respectively. Promoter activities and gene transcription were analyzed by luciferase reporter assays. Finally, m6A modification was analyzed by MeRIP.ResultsMETTL3 increased the m6A modification of YAP. METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. Moreover, the RNA level of MALAT1 was increased due to a higher level of m6A modification mediated by METTL3. Meanwhile, the stability of MALAT1 was increased by METTL3/YTHDF3 complex. Additionally, MALAT1 functions as a competing endogenous RNA that sponges miR-1914-3p to promote the invasion and metastasis of NSCLC via YAP. Furthermore, the reduction of YAP m6A modification by METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo.ConclusionResults indicated that the m6A mRNA methylation initiated by METTL3 promotes YAP mRNA translation via recruiting YTHDF1/3 and eIF3b to the translation initiation complex and increases YAP mRNA stability through regulating the MALAT1-miR-1914-3p-YAP axis. The increased YAP expression and activity induce NSCLC drug resistance and metastasis.
It is widely postulated that tissue aging could be, at least partially, caused by reduction of stem cell number, activity, or both. However, the mechanisms of controlling stem cell aging remain largely a mystery. Here, we use Drosophila ovarian germline stem cells (GSCs) as a model to demonstrate that age-dependent decline in the functions of stem cells and their niche contributes to overall stem cell aging. BMP signaling activity from the niche significantly decreases with age, and increasing BMP signaling can prolong GSC life span and promote their proliferation. In addition, the age-dependent E-cadherin decline in the stem cell-niche junction also contributes to stem cell aging. Finally, overexpression of SOD, an enzyme that helps eliminate free oxygen species, in either GSCs or their niche alone can prolong GSC life span and increase GSC proliferation. Therefore, this study demonstrates that stem cell aging is controlled extrinsically and intrinsically in the Drosophila ovary.
Summary
Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.