2Plants can acclimate by using tropisms to link the direction of growth to 41 environmental conditions. Hydrotropism allows roots to forage for water, a process 42 known to depend on abscisic acid (ABA) but whose molecular and cellular basis 43 remains unclear. Here, we show that hydrotropism still occurs in roots after laser 44 ablation removed the meristem and root cap. Additionally, targeted expression 45 studies reveal that hydrotropism depends on the ABA signalling kinase, SnRK2.2, and 46 the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical 47 cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing 48 differential cell-length increases in the cortex, but not in other cell types. We conclude 49 that root tropic responses to gravity and water are driven by distinct tissue-based 50 mechanisms. In addition, unlike its role in root gravitropism, the elongation zone 51 performs a dual function during a hydrotropic response, both sensing a water 52 potential gradient and subsequently undergoing differential growth. 53 3 Tropic responses are differential growth mechanisms that roots use to explore the 54 surrounding soil efficiently. In general, a tropic response can be divided into several steps, 55 comprising perception, signal transduction, and differential growth. All of these steps have 56 been well characterized for gravitropism, where gravity sensing cells in the columella of the 57 root cap generate a lateral auxin gradient, whilst adjacent lateral root cap cells transport 58 auxin to epidermal cells in the elongation zone, thereby triggering the differential growth that 59 drives bending [1][2][3][4] . In gravi-stimulated roots, the lateral auxin gradient is transported 60 principally by AUX1 and PIN carriers [3][4][5] . 61Compared with gravitropism, the tropic response to asymmetric water availability, i.e., 62 hydrotropism, has been far less studied. Previously, it was reported that surgical removal or 63 ablation of the root cap reduces hydrotropic bending in pea [6][7][8] and Arabidopsis thaliana 9 , 64suggesting that the machinery for sensing moisture gradients resides in the root cap. It has 65 also been reported that hydrotropic bending occurs due to differential growth in the 66 elongation zone 7,10 . However unlike gravitropism, hydrotropism in A. thaliana is independent 67 of AUX1 and PIN-mediated auxin transport 11,12 . Indeed, roots bend hydrotropically in the 68 absence of any redistribution of auxin detectable by auxin-responsive reporters 13,14 . 18,19 . 83However it is unclear whether this broad expression pattern is necessary for MIZ1's function 84 in hydrotropism or whether ABA signal transduction components in general have to be 85 expressed in specific root tip tissues for a hydrotropic response. The present study describes 86 a series of experiments in A. thaliana designed to identify the root tissues essential for a 87 hydrotropic response. We report that MIZ1 and a key ABA signal-transduction component 88SnRK2....
Ethylene stimulates the exaggerated hook formation in etiolated seedlings. It has been reported that other phytohormones, such as jasmonate or gibberellins, could inhibit or coordinate hook formation, respectively. However, whether any environmental factors participate in this process is unknown. Here, we show that in darkness, high ambient temperature suppresses the ethylene-triggered exaggerated hook formation in wild-type plants and reduces the hook curvatures in constitutively ethylene responsive mutants. Interestingly, high temperature does not abrogate the activity of the central transcription factor EIN3, suggesting that high temperature acts downstream of ethylene signaling. Next, we show that the natural auxin levels in the hook regions are reduced and their asymmetric distributions are disturbed upon high temperature treatment. To explore the mechanisms for reducing auxin accumulation, we monitor the transcription of several genes encoding auxin biosynthesis related enzymes and find that most YUCCA genes are transcriptionally down-regulated. Finally, we show that the currently reported plant thermo-sensory components in light-grown plants (phytochrome or PIF4) are not sufficient for thermo-sensing in etiolated seedlings. We speculate that in darkness, plants sense high ambient temperature through a distinct mechanism. Taken together, we demonstrate that high temperature suppresses ethylene-induced exaggerated hook formation via the inhibition of local auxin activities.
The homotypic fusion and protein sorting (HOPS) complex is a conserved, multi-subunit tethering complex in eukaryotic cells. In yeast and mammalian cells, the HOPS subunit vacuolar protein sorting-associated protein 41 (VPS41) is recruited to late endosomes after Ras-related protein 7 (Rab7) activation and is essential for vacuole fusion. However, whether VPS41 plays conserved roles in plants is not clear. Here, we demonstrate that in the model plant Arabidopsis (Arabidopsis thaliana), VPS41 localizes to distinct condensates in root cells in addition to its reported localization at the tonoplast. The formation of condensates does not rely on the known upstream regulators but depends on VPS41 self-interaction and is essential for vegetative growth regulation. Genetic evidence indicates that VPS41 is required for both homotypic vacuole fusion and cargo sorting from the AP-3, Rab5, and Golgi-independent pathways but is dispensable for the Rab7 cargo inositol transporter 1 (INT1). We also show that VPS41 has HOPS-independent functions in vacuolar transport. Taken together, our findings indicate that Arabidopsis VPS41 is a unique subunit of the HOPS complex that carries out plant-specific roles in both vacuolar transport and developmental regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.