Electroluminescent (EL) nanoclusters holding promise for newgeneration cluster light-emitting devices (CLEDs) rapidly emerge. However, slow radiation and serious quenching of cluster emitters largely limit the device performance. Herein, we report two monofunctionalized biphosphine chelated Cu 4 I 4 clusters [DMACDBFDP] 2 Cu 4 I 4 and [DPACDBFDP] 2 Cu 4 I 4 . The asymmetric modification and electron-donating effect of acridine groups lead to the iodine-toligand charge transfer predominant excited states of the clusters, which feature thermally activated delayed fluorescence with markedly improved singlet radiative rate constants and reduced triplet nonradiative rate constants. As consequence, compared to the nonfunctionalized parent cluster, [DPACDBFDP] 2 Cu 4 I 4 achieves 16-fold increased photoluminescence (81%) and 20-fold increased EL (19.5%) quantum efficiencies. Such new-record efficiencies make CLEDs achieve the state-of-the-art performance of all kinds of EL technologies.
Luminescence clusters composed of organic ligands and metals have gained significant interests as scintillators owing to their great potential in high X-ray absorption, customizable radioluminescence, and solution processability at low temperatures. However, X-ray luminescence efficiency in clusters is primarily governed by the competition between radiative states from organic ligands and nonradiative cluster-centered charge transfer. Here we report that a class of Cu4I4 cubes exhibit highly emissive radioluminescence in response to X-ray irradiation through functionalizing biphosphine ligands with acridine. Mechanistic studies show that these clusters can efficiently absorb radiation ionization to generate electron-hole pairs and transfer them to ligands during thermalization for efficient radioluminescence through precise control over intramolecular charge transfer. Our experimental results indicate that copper/iodine-to-ligand and intraligand charge transfer states are predominant in radiative processes. We demonstrate that photoluminescence and electroluminescence quantum efficiencies of the clusters reach 95% and 25.6%, with the assistance of external triplet-to-singlet conversion by a thermally activated delayed fluorescence matrix. We further show the utility of the Cu4I4 scintillators in achieving a lowest X-ray detection limit of 77 nGy s−1 and a high X-ray imaging resolution of 12 line pairs per millimeter. Our study offers insights into universal luminescent mechanism and ligand engineering of cluster scintillators.
Controllably optimizing excited-state characteristics is crucial for luminescent nanoclusters but remains a formidable challenge. Herein, we report an effective “ligand-induced asymmetrization” strategy for constructing thermally activated delayed fluorescence-featured cubic Cu 4 I 4 nanoclusters with asymmetric configurations, named [tBCzDBFDP] 2 Cu 4 I 4 and [PTZDBFDP] 2 Cu 4 I 4 . Through changing 3,6-di- tert -butyl-carbazole (tBCz) to phenothiazine (PTZ) with a stronger electron-donating effect, emission color is tuned from greenish blue of [tBCzDBFDP] 2 Cu 4 I 4 to yellow of [PTZDBFDP] 2 Cu 4 I 4 , as well as the triplet locally excited state of the former to the triplet charge transfer state of the latter. Temperature-correlated spectroscopic investigation indicates that in terms of triplet quenching suppression, [tBCzDBFDP] 2 Cu 4 I 4 is superior to [PTZDBFDP] 2 Cu 4 I 4 , in accord with the stabilities of their triplet locally excited state and triplet charge transfer state. As a consequence, these asymmetric Cu 4 I 4 nanocubes endowed their cluster light-emitting diodes with the external quantum efficiencies beyond 12% for sky blue and 8% for yellow. These results suggest the significance and effectiveness of ligand engineering for optoelectronic nanoclusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.