The section of submarine cable that is installed in enclosed J-tubes represents a possible thermal limiting point along the export circuits of offshore wind farms (OWFs). To obtain higher continuous thermal ratings for J-tube systems, a ventilated design, realized by allowing for the flow of natural wind into the J-tube through vents, is considered in this paper. To evaluate the performance of this forced-ventilation design, a coupled three-dimensional (3D) numerical model is constructed using the computational fluid dynamics (CFD) technique. The CFD method is first successfully tested through comparisons with existing methods for enclosed J-tubes. Then, the cable rating for the ventilated design is determined using the CFD model and compared with the rating for the enclosed case. The results show that the cooling effect from forced ventilation is obvious, and the cable rating could be increased by up to 27.5% for a wind speed of 10 m/s. This improvement in rating is especially significant for OWFs where the export circuit output is limited by the cable rating in enclosed J-tubes.
Abstract:In order to study switching transients in an offshore wind farm (OWF) collector system, we employ modeling methods of the main components in OWFs, including vacuum circuit breakers (VCBs), submarine cables, and wind turbine transformers (WTTs). In particular, a high frequency (HF) VCB model that reflects the prestrike characteristics of VCBs was developed. Moreover, a simplified experimental system of an OWF electric collection system was set up to verify the developed models, and a typical OWF medium voltage (MV) cable collection system was built in PSCAD/EMTDC based on the developed models. Finally, we investigated the influences of both the initial closing phase angle of VCBs and typical system operation scenarios on the amplitude and steepness of transient overvoltages (TOVs) at the high-voltage side of WTTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.